
NDC Security 2022

Containers as an illusion
or

"The building blocks of Linux containers and sandboxes”

Michael Kerrisk, man7.org © 2022

mtk@man7.org

6 April 2022, Oslo, Norway

Outline

1 Containers as an illusion 5
2 Tools for creating the illusion 9
3 Namespaces 11
4 Cgroups (control groups) 25
5 Seccomp 33
6 User namespaces and capabilities 41
7 Containers inside containers 50
8 Sandboxing and other use cases 54

Who am I?

Maintainer of Linux man-pages project since 2004
≈1060 pages, mainly for system calls & C library functions

https://www.kernel.org/doc/man-pages/
(I wrote a lot of those pages...)

(Comaintainer since 2020)
Author of a book on the Linux programming interface

http://man7.org/tlpi/
Trainer/writer/engineer
http://man7.org/training/
Email: mtk@man7.org
Twitter: @mkerrisk

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 3 / 56

Feel free to ask questions as we go

Outline

1 Containers as an illusion 5
2 Tools for creating the illusion 9
3 Namespaces 11
4 Cgroups (control groups) 25
5 Seccomp 33
6 User namespaces and capabilities 41
7 Containers inside containers 50
8 Sandboxing and other use cases 54

A world of our own

One purpose of containers is to provide an illusion...
... that a group of processes are in a world of their own
But it’s only an illusion

Possibly hundreds of other containers on system
Each with processes under same illusion

Plus processes outside containers
E.g., container managers

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 6 / 56

The nature of the illusion

Processes inside container should not:
Be able to see processes outside container
Be able to see resources used by outside processes
Be (unduly) impacted by resource usage by outside
processes

Outside processes shouldn’t be able to crash system
It should not be “obvious” that processes are in a container

(Though there are plenty of clues if one looks)

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 7 / 56

The nature of the illusion

Container is a mini-system; should have its own:
Init process (PID 1)
Set of mounted filesystems
Network infrastructure
Hostname
And so on...

Our container should have a superuser
Or more generally: user/process with some or all of power
of “root” inside container
But that user/process should be powerless outside container

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 8 / 56

Outline

1 Containers as an illusion 5
2 Tools for creating the illusion 9
3 Namespaces 11
4 Cgroups (control groups) 25
5 Seccomp 33
6 User namespaces and capabilities 41
7 Containers inside containers 50
8 Sandboxing and other use cases 54

Tools for creating the illusion

Let’s explore the tools used to create the illusion:
Namespaces
Cgroups (control groups)
Seccomp (secure computing)
User namespaces
Capabilities

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 10 / 56

Outline

1 Containers as an illusion 5
2 Tools for creating the illusion 9
3 Namespaces 11
4 Cgroups (control groups) 25
5 Seccomp 33
6 User namespaces and capabilities 41
7 Containers inside containers 50
8 Sandboxing and other use cases 54

Namespaces

A namespace (NS) wraps a global resource so as to
provide isolation of that resource
There are different types of NS that isolate different
resources, including:

UTS NSs: isolate hostname
Mount NSs: isolate set of mounts
PID NSs: isolate PIDs
Network NSs: isolate network infrastructure
User NSs: isolate UIDs and GIDs

User NSs are cornerstone of unprivileged containers

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 12 / 56

Namespaces

For each NS type, there are multiple instances of that type
At boot time, there is one instance of each NS type: the
“initial instance”

Each process is a member of exactly one instance of each of
the NS types
Often, “namespace” is used as synonym for “NS instance”...

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 13 / 56

Namespaces

There are system calls:
clone(2) : create new child process in new NSs
unshare(2) : create new NSs and move caller into those NSs
setns(2) : move calling process into different NS(s)

And commands layered on top of those system calls:
unshare(1) : create new NS(s) and execute a command in
those NS(s)
nsenter(1) : join existing NS(s) and execute a command in
those NS(s)

We’ll use these commands in some demonstrations

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 14 / 56

What we can accomplish with namespaces

Using namespaces, we can provide our container with:
Its own hostname
A private set of mounts
A private set of PIDs (including PID 1)
Private network resources; for example:

(Virtual) NW device with own IP address
Provides NW connection to outside world

A full range of socket ports
(e.g., so our container can run a web server on port 80)

And more...

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 15 / 56

The illusion of private resources: hostnames

UTS namespaces virtualize hostnames
⇒ Each container can have a unique hostname

Hostname can be broadcast on DHCP in order to obtain IP
address

Live demo...

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 16 / 56

UTS namespaces in action

Show hostname in initial UTS NS:
$ hostname
bienne

Create new UTS NS and view hostname:
$ SUDO_PS1='ns2# ' sudo unshare --uts bash
ns2# hostname
bienne # Was inherited from previous NS

Change the hostname in new UTS NS and verify:
ns2# hostname tekapo
ns2# hostname
tekapo

But back in first shell (initial NS), hostname is unchanged:
$ hostname
bienne

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 17 / 56

The illusion of private resources: mounts

Mount namespaces enable each container to have its own
set of mounted filesystems
Each container can thus have private filesystem mounts that
are not visible in other containers
Mount NS demo...

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 18 / 56

The illusion of private resources: mounts

In first terminal window (in initial mount NS), create a
directory to be used as root of small tree of mounts:
$ mkdir /tmp/x

Mount a tmpfs filesystem at that location, and create further
directories that will be used as (child) mount points:
$ sudo mount -t tmpfs none /tmp/x
$ mkdir /tmp/x/{aaa,bbb}

In a second terminal, create a new mount NS (NS 2), and
create a new mount (/tmp/x/bbb) in that NS:
$ SUDO_PS1='ns2# ' sudo unshare --mount bash --norc
ns2# mount -t tmpfs none /tmp/x/bbb

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 19 / 56

The illusion of private resources: mounts

Verify the subtree of mounts in NS 2:
ns2# findmnt -a -o target -R /tmp/x
TARGET
/tmp/x
`-/tmp/x/bbb

In first terminal (initial NS), create a mount (/tmp/x/aaa),
and verify that mount /tmp/x/bbb is not present:
$ sudo mount -t tmpfs none /tmp/x/aaa
$ findmnt -a -o target -R /tmp/x
TARGET
/tmp/x
`-/tmp/x/aaa

Show that /tmp/x/aaa mount is not present in NS 2:
$ findmnt -a -o target -R /tmp/x
TARGET
/tmp/x
`-/tmp/x/bbb

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 20 / 56

Making other processes invisible: PID namespaces

PID namespaces virtualize PIDs:
PIDs inside NS are private to NS
Processes outside PID NS are invisible inside NS

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 21 / 56

Providing PID 1 (init) for a container: PID namespaces

The first process inside a new PID NS gets PID 1
This is the init process for the NS/container, and serves a
role analogous to traditional init:

Performs container initialization and creates other processes
Becomes parent of orphaned processes in the container
If this init terminates, all other processes in NS/container
are killed and NS becomes unusable

Live demo...

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 22 / 56

PID namespaces in action

Create a PID NS and mount a /proc filesystem for that NS:
$ sudo unshare --pid --fork --mount-proc dash

Inside PID NS, display PID of shell, and start a sleep process
and display its PID:
echo $$
1
sleep 1000 &
pidof sleep # Used PID 3
2

Take a look in /proc:
ls -1 /proc
1 # dash
2 # sleep
4 # ls
acpi
...

PIDs outside NS are not visible
©2022, Michael Kerrisk @mkerrisk Containers as an illusion 23 / 56

PID namespaces in action

From another terminal window (in initial PID NS), display
PID of dash and sleep :
$ pidof dash
22645
$ pidof sleep
22677

Processes are visible outside NS, but with different PIDs!
If we kill init process of a PID NS, all other processes in NS
are also killed:
$ sudo kill -9 22645 # Kill PID 1 in inner NS
$ sudo kill -9 22677 # Is 'sleep' process still present?
bash: kill: (22677) - No such process

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 24 / 56

Outline

1 Containers as an illusion 5
2 Tools for creating the illusion 9
3 Namespaces 11
4 Cgroups (control groups) 25
5 Seccomp 33
6 User namespaces and capabilities 41
7 Containers inside containers 50
8 Sandboxing and other use cases 54

Cgroups (control groups)

Allow limitation (and measurement) of resource consumption
Key aspects:

Management is at level of groups of processes
(Granularity of older rlimit mechanism is per-process)

Management is hierarchical
Limits in higher-level cgroup apply to lower-level cgroups
(and can’t be relaxed at lower level)

The history is unfortunate:
Uncoordinated development of cgroups v1 (2008) resulted
in a mess
Cgroups v2 was a rewrite to fix the mess

Seriously usable starting with Linux 4.15 (Jan 2018)
By 2021, all major distros have moved to cgroups v2

Examples shown in this presentation use v2

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 26 / 56

Cgroups (control groups)

Cgroups interface takes form of pseudofilesystem
Creating directory in FS == creating a cgroup
Directory hierarchy defines hierarchy of cgroups
V2 hierarchy is mounted at /sys/fs/cgroup

Allows limitation of consumption/control of usage of many
types of resources, per cgroup, including:

CPU usage
Memory usage
I/O bandwidth
Network traffic
PIDs (or, more precisely, number of threads)
Which devices may be accessed

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 27 / 56

What we can accomplish with cgroups

Thanks to cgroups, we can:
Prevent our container from overwhelming system with
excessive resource demands
Be assured that other containers can’t overwhelm
system

⇒ our container obtains reasonable share of resources
Limit access to resources such as devices

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 28 / 56

Preventing processes from over-consuming: CPU

The cgroups cpu controller bandwidth-control mode can be
used to set a ceiling on CPU usage of a group of processes
Limit defined by cpu.max file, which expresses limit as
fraction of one CPU

Limit expressed by two numbers expressing a fraction:
quota / period

Live demo...

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 29 / 56

Preventing processes from over-consuming: CPU

In one terminal, run CPU burner (timers/cpu_burner.c)
Burns CPU; at end of each second, displays
[CPU-time / elapsed-time] during that second

Assuming lightly loaded system, %CPU will be ≈100%

Create cgroup, set CPU limit of 50%, and move burner
process into cgroup
$ sudo bash
cd /sys/fs/cgroup
mkdir mygrp # Create cgroup
echo '50000 100000' > mygrp/cpu.max # Set CPU limit of 50%
echo 15477 > mygrp/cgroup.procs # Put burner into cgroup

CPU usage of burner process soon settles to 50%
Start second burner process, and place it in cgroup
echo 15527 > mygrp/cgroup.procs

%CPU for each burner process soon settles to 25%
©2022, Michael Kerrisk @mkerrisk Containers as an illusion 30 / 56

Preventing processes from over-consuming: PIDs

What if someone’s container creates a fork bomb that
prevents anyone else from creating processes?
There’s a cgroups controller for that: pids
Limits number of threads (not processes) in a cgroup
Live demo...

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 31 / 56

Preventing processes from over-consuming: PIDs

Start a terminal, and obtain PID of shell:
$ echo $$
150439

Create cgroup, set pids.max limit, place shell into cgroup:
$ sudo bash
cd /sys/fs/cgroup
mkdir mygrp # Create cgroup
echo 10 > mygrp/pids.max # Set limit of 10 threads
echo 150439 > mygrp/cgroup.procs # Put shell into cgroup

From shell, try to create 20 processes:
$ for p in $(seq 1 20); do sleep 10 & done
[1] 153817
[2] 153818
...
[9] 153825
bash: fork: retry: Resource temporarily unavailable

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 32 / 56

Outline

1 Containers as an illusion 5
2 Tools for creating the illusion 9
3 Namespaces 11
4 Cgroups (control groups) 25
5 Seccomp 33
6 User namespaces and capabilities 41
7 Containers inside containers 50
8 Sandboxing and other use cases 54

Seccomp (secure computing)

Linux kernel provides ≈400 syscalls
Programmers think of syscalls as mechanism to request
services from kernel
Attackers think of each syscall as one more way of breaking
into system
Most programs don’t use even 10% of available syscalls
If program makes unexpected syscall, perhaps it is because
of a compromise

I.e., attacker has gained control and is forcing program to
execute arbitrary code to exploit a syscall vulnerability

Seccomp provides a way of limiting set of syscalls that a
program may make

Useful when executing untrustworthy program or plug-in

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 34 / 56

Preventing a container from executing illegitimate code

Seccomp allows us to install a filter program into kernel that
makes decisions about every syscall made by process
Filter returns a decision to kernel saying how syscall should
be handled:

Permit the syscall
Kill the process
Make it look like the syscall failed with a specified error

(Syscall isn’t executed)
Send a notification to a supervisor process

Supervisor might then perform action on behalf of target
process

And more...

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 35 / 56

What we can accomplish with seccomp

Using seccomp, we can:
Reduce risk that process in our container executes code that
damages the container or the wider system
Be assured that risk of other containers running code that
damages the system is reduced

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 36 / 56

Preventing container from executing illegitimate code

A seccomp filter is expressed in BPF byte code that is run
on VM inside kernel
Filter receives various info about the syscall: sycall number,
argument (register values):
struct seccomp_data {

int nr; // System call number */
__u32 arch; // Architecture (AUDIT_ARCH_*)
__u64 instruction_pointer; // CPU IP */
__u64 args[6]; // System call arguments */

};

Example BPF filter follows...

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 37 / 56

Seccomp BPF example

Following BPF code loads syscall number, tests whether it
equals syscallNum, and kills process if it does:
static void install_filter(int syscallNum) {

struct sock_filter filter[] = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,

(offsetof(struct seccomp_data, nr))),

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, syscallNum, 1, 0),

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS)

};
...

}

(Some important pieces are missing in this example)
(There are tools to make writing filter code easier...)

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 38 / 56

Seccomp BPF example

From C program (seccomp/seccomp_deny_syscall.c),
install aforementioned filter and exec arbitrary program
int main(int argc, char *argv[]) {

...
install_filter(atoi(argv[1]));
execvp(argv[2], &argv[2]);

}

Usage:
seccomp_deny_syscall <syscall#> <cmd> <arg>...

Live demo...

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 39 / 56

Seccomp BPF example

Test by executing a program that calls getppid() syscall
$ ausyscall msgsnd # Not a syscall made in 'ppid' program
msgsnd 69
$./seccomp_deny_syscall 69 ../namespaces/ppid x
PID: 161669
Parent PID: 155421 # getppid() succeeded...
$ ausyscall getppid
getppid 110
$./seccomp_deny_syscall 110 ../namespaces/ppid x
PID: 161679
Bad system call (core dumped)

BPF filter told kernel to kill the process...

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 40 / 56

Outline

1 Containers as an illusion 5
2 Tools for creating the illusion 9
3 Namespaces 11
4 Cgroups (control groups) 25
5 Seccomp 33
6 User namespaces and capabilities 41
7 Containers inside containers 50
8 Sandboxing and other use cases 54

Capabilities

The problem: on UNIX systems, root is a dangerous concept
If a root process is compromised, the game is over...

Capabilities attempt to solve problem by breaking power of
superuser into smaller pieces

41 capabilities, as at kernel 5.17

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 42 / 56

What we can accomplish with capabilities

Capabilities allow a number of important possibilities:
Creation of privileged entities that are less powerful
than root entities

I.e., less powerful than set-UID-root programs and UID 0
processes
� Less powerful == less dangerous

Creation of processes that have elevated privilege, but
only within a container

I.e., processes are powerless in outside world
Creation of privileged programs that confer privilege only
within certain containers

Privileged programs == set-UID-root programs and
programs that confer capabilities

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 43 / 56

The illusion of superuser (root) inside the container

User NSs enable process’s UIDs and GIDs inside container to
be different from IDs outside NS

Relationship between IDs inside and outside NS is defined
by writing UID and GID maps

/proc/PID/uid_map and /proc/PID/gid_map

Lines in map files consist of 3 numbers:
0 1000 1

<ID-inside-NS> <ID-outside-NS> <length>

“UID 0 inside NS maps to UID 100 in outer NS; length of
mapping is 1”

Interesting use case: process has nonzero UID outside NS,
and UID 0 inside NS

“Superuser” inside the user NS

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 44 / 56

The illusion of superuser (root) inside the container

Unlike other NSs, creating user NS does not require privilege
First process in new user NS gets all capabilities inside
NS

Full set of capabilities == all the power of superuser

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 45 / 56

What does it mean to be superuser inside a NS?

Each non-user NS governs some type of global resource
Mount NS: mounts
UTS NS: hostname
NW NS: NW resources
etc.

Each non-user NS is owned by some particular user NS
Owner relation is established when non-user NS is created

Root power in user NS == root power over resources
governed by non-user NSs owned by user NS

IOW: can perform superuser operations, but operations
have effect only for processes in same non-user NSs

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 46 / 56

User namespaces and capabilities–a picture

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is

member o
f

is member of

X created with: unshare --user --map-root-user --uts <prog>
X is in a new user NS, created with root mappings

X has all (permitted and effective) capabilities (=ep)
X is in a new UTS NS, which is owned by new user NS
X is in initial instance of all other NS types (e.g., network NS)

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 47 / 56

User namespaces (and capabilities) in action

As unprivileged user, start a shell in new user, UTS, and
mount NSs:
$ id -u
$ PS1='ns2# ' unshare --user --map-root-user --uts --mount \

bash --norc

Inside the user NS, shell has UID 0 and has all capabilities:
ns2# id -u
0
ns2# grep CapEff /proc/$$/status
CapEff: 000001ffffffffff # Hex mask, all 41 cap. bits set

The --map-root-user (–r) option created so-called root
mapping:
ns2# cat /proc/$$/uid_map

0 1000 1

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 48 / 56

User namespaces (and capabilities) in action

In this shell, we can change hostname:
ns2# hostname
bienne
ns2# hostname tekapo
ns2# hostname
tekapo

And we can mount (some kinds of) filesystems:
ns2# mkdir /tmp/aaa
ns2# mount -t tmpfs none /tmp/aaa
ns2# grep mnt /proc/mounts
none /tmp/aaa tmpfs ...

But we can’t create a virtual NW device:
ns2# ip link add veth0 type veth peer name veth1
RTNETLINK answers: Operation not permitted

Shell is in initial NW NS, which is owned by initial user NS
This shell has no capabilities in initial user NS

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 49 / 56

Outline

1 Containers as an illusion 5
2 Tools for creating the illusion 9
3 Namespaces 11
4 Cgroups (control groups) 25
5 Seccomp 33
6 User namespaces and capabilities 41
7 Containers inside containers 50
8 Sandboxing and other use cases 54

Containers inside containers

“It should not be obvious that we are in a container”
So, it should be (and is) possible to run a container inside a
container
Various features support this, notably:

PID namespaces are hierarchical (i.e., can be nested)
User namespaces are hierarchical
Ownership relationship between user NS and non-user NSs
(already described)

Each container has a user NS that owns the non-user NSs
associated with container

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 51 / 56

A PID namespace hierarchy

A process that is member of a PID NS is also visible (i.e., has a
PID in) in all ancestor NSs

1 304 321

1

326

3

513

9

1

539

21

5

391 420

1

433

2

Initial namespace

Child namespace Child namespace

Grandchild namespace

PID

PID

PID in ancestor

namespace

PID

namespace

fork()

clone()

CLONE_NEWPID

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 52 / 56

User namespace UID and GID maps

Initial user NS (NS 0)

1000 1009 1014 1020 1029

Child NS 2

Map: 50 1000 15

50 64

Child NS 1

Map: 0 1000 10

0 9

Child NS 4

Map: 0 1020 10

0 9

Child NS 3

Map: 10 50 10

0 9

10 19

Each user NS has a UID map (and a GID map) that says
how IDs in that NS map to IDs in outer NS
E.g., ID 15 in NS 3 maps to: 55 in NS 2; 1005 in NS 0;
5 in NS 1

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 53 / 56

Outline

1 Containers as an illusion 5
2 Tools for creating the illusion 9
3 Namespaces 11
4 Cgroups (control groups) 25
5 Seccomp 33
6 User namespaces and capabilities 41
7 Containers inside containers 50
8 Sandboxing and other use cases 54

Other use cases

Motivating use case for much of this work was containers
Docker, Podman, LXC use NSs, cgroups, and seccomp
But not the only motivating use case

In some cases, it wasn’t even initial motivation
(e.g., mount NSs back in 2002)

Other use cases became possible:
App-specific sandboxing; e.g., web browser renderer
process
Generalized sandboxing: Firejail
App. packaging: provide application with complete
environment (packages, libraries) needed to “run anywhere”

Flatpak, Snap
NW security: completely isolate app from NW
Creating environments with no superuser

E.g., sandbox for browser rendering process
And more...

©2022, Michael Kerrisk @mkerrisk Containers as an illusion 55 / 56

Thanks!
Michael Kerrisk, Trainer and Consultant

http://man7.org/training/

mtk@man7.org @mkerrisk

Slides at http://man7.org/conf/
Source code at http://man7.org/tlpi/code/

	Containers as an illusion 1
	Containers as an illusion 5
	Tools for creating the illusion 9
	Namespaces 11
	Cgroups (control groups) 25
	Seccomp 33
	User namespaces and capabilities 41
	Containers inside containers 50
	Sandboxing and other use cases 54

