
NDC TechTown

An introduction to control
groups (cgroups) v2

Michael Kerrisk, man7.org © 2021

mtk@man7.org

20 October 2021, Kongsberg, Norway

Outline

1 Introduction 3
2 Preamble 6
3 What are control groups? 12
4 An example: the pids controller 17
5 A quick survey of the controllers 23
6 Enabling and disabling controllers 32
7 Managing controllers to differing levels of granularity 39

Outline

1 Introduction 3
2 Preamble 6
3 What are control groups? 12
4 An example: the pids controller 17
5 A quick survey of the controllers 23
6 Enabling and disabling controllers 32
7 Managing controllers to differing levels of granularity 39

Who am I?

Maintainer of Linux man-pages project since 2004
≈1060 pages, mainly for system calls & C library functions

https://www.kernel.org/doc/man-pages/
(I wrote a lot of those pages...)

(Comaintainer since 2020)
Author of a book on the Linux programming interface

http://man7.org/tlpi/
Trainer/writer/engineer
http://man7.org/training/
Email: mtk@man7.org
Twitter: @mkerrisk

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 4 / 42

Outline

Topics:
What are control groups?
An example (pids controller)
A survey of the controllers
Enabling and disabling controllers
Managing controllers to different levels of granularity

Questions: at the end

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 5 / 42

Outline

1 Introduction 3
2 Preamble 6
3 What are control groups? 12
4 An example: the pids controller 17
5 A quick survey of the controllers 23
6 Enabling and disabling controllers 32
7 Managing controllers to differing levels of granularity 39

Some history

2006/2007, “Process Containers” @ Google ⇒ Cgroups v1
Jan 2008: initial mainline kernel release (Linux 2.6.24)

Three resource controllers (all CPU-related) in initial release
Subsequently, other controllers are added

memory, devices, freezer, net_cls, blkio...
But a few years of uncoordinated design leads to a mess

Decentralized design fails us... again
Sep 2012: work has already begun on cgroups v2...

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 7 / 42

Some history

Sep 2015: systemd adds cgroup v2 support
Mar 2016: cgroups v2 officially released (Linux 4.5)

But, lacks feature parity with cgroups v1
Jan 2018: cpu controller is released for cgroups v2

(Absence had been major roadblock to adoption of v2)
Oct 2019: Fedora 31 is first distro to move to v2-by-default
2020: Docker 20.10 gets cgroups v2 support
2021: other distros move to v2-by-default

Debian 11.0 (Aug 2021); Ubuntu 21.10 (Oct 2021); Arch

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 8 / 42

We are at a tipping point

A lot of existing infrastructure depends on cgroups v1
But a lot of migration work has already been done

So, let’s ignore v1 and focus on v2

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 9 / 42

Booting to cgroups v2

You may be on a distro that uses cgroups v1 by default; if
so, you need to reboot....

Because we can’t simultaneously use a controller in both v1
and v2
If this shows a value > 1, then you need to reboot:
$ grep -c cgroup /proc/mounts # Count cgroup mounts

Either: use kernel boot parameter, cgroup_no_v1:
cgroup_no_v1=all ⇒ disable all v1 controllers

Or: use systemd.unified_cgroup_hierarchy boot
parameter

⇒ systemd abandons its “hybrid” mode, uses just v2
(Hybrid mode uses a mixture of cgroups v1 and v2)

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 10 / 42

The cgroup2 filesystem

On boot, systemd mounts v2 hierarchy at /sys/fs/cgroup
(or /sys/fs/cgroup/unified)

The (pseudo)filesystem type is “cgroup2”
In cgroups v1, filesystem type is “cgroup”

The cgroups v2 mount is sometimes known as the “unified”
hierarchy

Because all controllers are associated with a single hierarchy
By contrast, in v1 there were multiple hierarchies

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 11 / 42

Outline

1 Introduction 3
2 Preamble 6
3 What are control groups? 12
4 An example: the pids controller 17
5 A quick survey of the controllers 23
6 Enabling and disabling controllers 32
7 Managing controllers to differing levels of granularity 39

What are control groups?

Two principle components:
A mechanism for hierarchically grouping processes
A set of controllers (kernel components) that manage,
control, or monitor processes in cgroups

Interface is via a pseudo-filesystem
Cgroup manipulation takes form of filesystem operations,
which might be done:

Via shell commands
Programmatically
Via management daemon (e.g., systemd)
Via your container framework’s tools (e.g., LXC, Docker)

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 13 / 42

What do cgroups allow us to do?

Limit resource usage of group
E.g., limit % of CPU available to group; limit amount of
memory that group can use

Prioritize group for resource allocation
E.g., favor the group for network bandwidth

Resource accounting
Measure resources used by processes

Freeze a group
Freeze, restore, and checkpoint a group

And more...

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 14 / 42

Terminology

Control group: a group of processes that are bound
together for purpose of resource management
(Resource) controller: kernel component that controls or
monitors processes in a cgroup

E.g., memory controller limits memory usage; cpu controller
limits CPU usage
Also known as subsystem

(But that term is rather ambiguous because so generic)

Cgroups are arranged in a hierarchy
Each cgroup can have zero or more child cgroups
Child cgroups inherit control settings from parent

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 15 / 42

Filesystem interface

Cgroup filesystem directory structure defines cgroups +
cgroup hierarchy

I.e., use mkdir(2) / rmdir(2) (or equivalent shell
commands) to create cgroups

Each subdirectory contains automagically created files
Some files are used to manage the cgroup itself
Other files are controller-specific

Files in cgroup are used to:
Define/display membership of cgroup
Control behavior of processes in cgroup
Expose information about processes in cgroup (e.g.,
resource usage stats)

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 16 / 42

Outline

1 Introduction 3
2 Preamble 6
3 What are control groups? 12
4 An example: the pids controller 17
5 A quick survey of the controllers 23
6 Enabling and disabling controllers 32
7 Managing controllers to differing levels of granularity 39

Example: the pids controller

pids (“process number”) controller allows us to limit
number of PIDs in cgroup (prevent fork() bombs!)
Create new cgroup, and place shell’s PID in that cgroup:
mkdir /sys/fs/cgroup/mygrp
echo $$
17273
echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

cgroup.procs defines/displays PIDs in cgroup
(Note ’#’ prompt ⇒ all commands done as superuser)

Moving a PID into a group automatically removes it from
group of which it was formerly a member

I.e., a process is always a member of exactly one group in
the hierarchy

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 18 / 42

Example: the pids controller

Can read cgroup.procs to see PIDs in group:
cat /sys/fs/cgroup/mygrp/cgroup.procs
17273
20591

Where did PID 20591 come from?
PID 20591 is cat command, created as a child of shell

Child process inherits cgroup membership from parent

pids.current shows how many processes are in group:
cat /sys/fs/cgroup/mygrp/pids.current
2

Two processes: shell + cat

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 19 / 42

Example: the pids controller

We can limit number of PIDs in group using pids.max file:
echo 5 > /sys/fs/cgroup/mygrp/pids.max
for a in $(seq 1 5); do sleep 60 & done
[1] 21283
[2] 21284
[3] 21285
[4] 21286
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: Resource temporarily unavailable

(The shell retries a few times and then gives up)
From a different shell, examine pids.current:
$ cat /sys/fs/cgroup/mygrp/pids.current
5

Not possible from first shell (can’t create more processes)

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 20 / 42

Discovering a process’s cgroup membership

/proc/PID/cgroup shows cgroup membership(s) of a
process:
$ cat /proc/17273/cgroup
0::/mygrp

Membership is shown as pathname relative to mount point
0:: is entry for cgroup v2 hierarchy

(In systemd’s hybrid mode, we would also see entries for
memberships in v1 hierarchies)

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 21 / 42

Destroying a cgroup

A cgroup that has no child cgroups and no member
processes can be destroyed by removing directory
Returning to our first shell:
rmdir mygrp
rmdir: failed to remove 'mygrp/': Device or resource busy
echo $$ > /sys/fs/cgroup/cgroup.procs # Move to root cgroup
rmdir mygrp # Succeeds

First attempt failed because shell is a member of cgroup we
are trying to remove
So, we move shell to root cgroup and repeat
Note: it is not necessary (or possible!) to delete files inside
directory beforehand

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 22 / 42

Outline

1 Introduction 3
2 Preamble 6
3 What are control groups? 12
4 An example: the pids controller 17
5 A quick survey of the controllers 23
6 Enabling and disabling controllers 32
7 Managing controllers to differing levels of granularity 39

Cgroups v2 controllers

Let’s get a flavor of what kinds of control are possible
Documentation/admin-guide/cgroup-v2.rst documents
v2 controllers

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 24 / 42

Controllers available in cgroups v2

cpu: limit and measure CPU usage by a group of processes;
two modes of operation:

Proportional-weight division (default)
Bandwidth control
Can intermingle these modes at different levels in hierarchy

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 25 / 42

cpu controller: proportional-weight division

/

B
shares=2048

A
shares=1024

C
shares=1024

X
shares=1000

Y
shares=4000

cpu.weight file in each group defines relative share of CPU
received by that group
Processes in B get 2048

1024+2048+1024 = 1
2 of CPU time

Processes in A and C each get 1024
1024+2048+1024 = 1

4 of CPU time

Processes in X get 2048
1024+2048+1024 ·

1000
1000+4000 = 1

2 ·
1
5 = 1

10 of CPU time

Processes in Y get 2048
1024+2048+1024 ·

4000
1000+4000 = 1

2 ·
4
5 = 4

10 of CPU time

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 26 / 42

cpu controller: bandwidth control

A
quota=50000

Q
quota=40000

P
quota=20000

R
quota=10000

X
quota=30000

Bandwidth control strictly limits CPU (quota/period)
granted to a group (even if no other competitors for CPU)
Assume that period is 100’000 in all cgroups
Processes under A will get maximum of 50% of (one) CPU
Processes under Q will get maximum of 40% of CPU
Processes under X will get maximum of 30% of CPU
Sibling cgroups under A are oversubscribed (won’t get 70% of CPU)

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 27 / 42

Controllers available in cgroups v2

cpuset: control CPU and memory affinity
Pin cgroup to one CPU/subset of CPUs (or memory nodes)
Dynamically manage placement of application components
on systems with large numbers of CPUs and memory nodes

Non-uniform memory access (NUMA) systems

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 28 / 42

Controllers available in cgroups v2

memory: limit memory usage per cgroup + memory usage
accounting

Soft limits influence page reclaim under memory pressure
Hard limits trigger per-cgroup OOM killer
Alternatively, can arrange for notifications to user-space
supervisor process in event of low-memory situation

io: limit I/O on block devices
HDDs, SSDs, USB, etc.
Policies:

Proportional-weight division of device bandwidth
Bandwidth control (throttling/hard limit)
Can set up per-device policies

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 29 / 42

Controllers available in cgroups v2

devices: limitwhich devices members of cgroup may access
No interfaces files; instead control is done by attaching
eBPF program to cgroup

Each attempt to open/create a device is gated by decision
that eBPF program returns to kernel

Example use: inside container, disallow access to devices
other than /dev/{null,zero,full,random,tty}

Control of network traffic
iptables allows eBPF filters that hook on cgroup v2
pathnames to manage NW traffic on a per-cgroup basis

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 30 / 42

Controllers available in cgroups v2

pids: limit number of PIDs in cgroup
Prevent fork bombs

freezer: freeze (suspend) and thaw (resume) a group of
processes

Useful for container migration and checkpoint/restore
And the rest:

perf_event: carry out per-cgroup perf monitoring
Allows perf monitoring of a container...

rdma: control use of RDMA resources per cgroup
hugetlb: limit usage of “huge pages” per cgroup

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 31 / 42

Outline

1 Introduction 3
2 Preamble 6
3 What are control groups? 12
4 An example: the pids controller 17
5 A quick survey of the controllers 23
6 Enabling and disabling controllers 32
7 Managing controllers to differing levels of granularity 39

Enabling and disabling controllers

Each cgroup v2 directory contains two files:
cgroup.controllers: lists controllers that are available
in this cgroup
cgroup.subtree_control: used to list/modify set of
controllers that are enabled in this cgroup

Always a subset of cgroup.controllers

Together, these files allow different controllers to be
managed to different levels of granularity in v2 hierarchy

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 33 / 42

Available controllers: cgroup.controllers

cgroup.controllers lists the controllers that are available
in a cgroup:
$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids

A controller may not be available because:
The same controllers is already in use in cgroups v1

Cgroups v1 and v2 can coexist, but a controller can be used
in only one version
Must unmount controller in v1 (often easier to reboot...)

The controller is not enabled in the parent cgroup
Certain so-called implicit controllers are always available,
and are not listed in cgroup.controllers

E.g., freezer, perf_event

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 34 / 42

Enabling controllers: cgroup.subtree_control

cgroup.subtree_control is used to show or modify the
set of controllers that are available in a cgroup:
cd /sys/fs/cgroup/
cat cgroup.subtree_control
memory pids

Contents of cgroup.subtree_control are always a subset
of cgroup.controllers

I.e., can’t enable controller that is not available in a cgroup
Controllers are enabled/disabled by writing to this file:
echo '+cpu' > cgroup.subtree_control # Enable 'cpu' controller
cat cgroup.subtree_control
cpu memory pids
echo '-cpu' > cgroup.subtree_control # Disable 'cpu' controller
cat cgroup.subtree_control
memory pids

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 35 / 42

Enabling controllers: cgroup.subtree_control

Enabling a controller in cgroup.subtree_control:
Allows resource to be controlled in child cgroups
Creates controller-specific attribute files in each child
directory

Attribute files in child cgroups are used by process
managing parent cgroup to manage resource allocation
into child cgroups

This is a significant difference from cgroups v1

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 36 / 42

cgroup.subtree_control example

Currently, cpu controller is not enabled in root cgroup:
cd /sys/fs/cgroup/
cat cgroup.subtree_control
memory pids

Create child cgroup and list cpu.* files:
mkdir grp1
ls grp1/cpu.*
grp1/cpu.pressure grp1/cpu.stat

(These two files show CPU-related statistics and are present
in every cgroup)

Enabling cpu controller in parent cgroup causes controller
interface files to appear in child cgroup:
echo '+cpu' > cgroup.subtree_control
ls grp1/cpu.*
grp1/cpu.max grp1/cpu.stat grp1/cpu.weight.nice
grp1/cpu.pressure grp1/cpu.weight

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 37 / 42

cgroup.subtree_control example

After enabling controller in parent cgroup, we can limit
resources in child cgroup...
Set hard CPU limit of 50% in child cgroup:
echo '50000 100000' > grp1/cpu.max

In another window, we start a program that burns CPU time
and displays statistics; and we move it into grp1:
echo 6445 > grp1/cgroup.procs # 6445 is PID of burner process

In the other terminal, we see:
$./cpu_burner
[6445] 1: elapsed/cpu = 1.001; %CPU = 99.862
[6445] 2: elapsed/cpu = 1.002; %CPU = 99.835
...
[6445] 6: elapsed/cpu = 1.197; %CPU = 83.522
[6445] 7: elapsed/cpu = 2.000; %CPU = 50.000
[6445] 8: elapsed/cpu = 2.000; %CPU = 50.000
...

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 38 / 42

Outline

1 Introduction 3
2 Preamble 6
3 What are control groups? 12
4 An example: the pids controller 17
5 A quick survey of the controllers 23
6 Enabling and disabling controllers 32
7 Managing controllers to differing levels of granularity 39

Managing controllers to differing levels of granularity

A controller is available in child cgroup only if it is
enabled in parent cgroup:
cat cgroup.controllers
cpuset cpu io memory hugetlb pids
cat cgroup.subtree_control
cpu memory pids
cat grp1/cgroup.controllers
cpu memory pids

cpuset, io, and hugetlb are not available in grp1

In grp1, none of the available controllers is initially enabled,
so no controllers are available at next level:
cat grp1/cgroup.controllers
cpu memory pids
cat grp1/cgroup.subtree_control # Empty
mkdir grp1/{grp10,grp11} # Make grandchild cgroups
cat grp1/grp2/cgroup.controllers # Empty

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 40 / 42

Managing controllers to differing levels of granularity

If we enable cpu in grp1, it becomes available at next level
echo '+cpu' > grp1/cgroup.subtree_control
cat grp1/grp10/cgroup.controllers
cpu

And cpu interface files appear in grp1/{grp10,grp11}

Here, cpu is being managed at finer granularity than memory
We can make distinct cpu allocation decisions for processes
in grp10 vs processes in grp11
But we can’t make distinct memory allocation decisions

grp10 and grp11 will share memory allocation from grp1

We did this by design (we don’t want to manage every
resource to same level of granularity):

We want distinct CPU allocations in grp10 and grp11

We want grp10 and grp11 to share a memory allocation

©2021, Michael Kerrisk @mkerrisk An introduction to control groups (cgroups) v2 41 / 42

Thanks!
Michael Kerrisk, Trainer and Consultant

http://man7.org/training/

mtk@man7.org @mkerrisk

Slides at http://man7.org/conf/
Source code at http://man7.org/tlpi/code/

	An introduction to control groups (cgroups) v2 1
	Introduction 3
	Preamble 6
	What are control groups? 12
	An example: the pids controller 17
	A quick survey of the controllers 23
	Enabling and disabling controllers 32
	Managing controllers to differing levels of granularity 39

