lttng-ust(3) — Linux manual page

NAME | SYNOPSIS | DESCRIPTION | EXAMPLE | ENVIRONMENT VARIABLES | BUGS | RESOURCES | COPYRIGHTS | THANKS | AUTHORS | SEE ALSO | COLOPHON

LTTNG-UST(3)                  LTTng Manual                  LTTNG-UST(3)

NAME         top

       lttng-ust - LTTng user space tracing

SYNOPSIS         top

       #include <lttng/tracepoint.h>

       #define TRACEPOINT_ENUM(prov_name, enum_name, mappings)
       #define TRACEPOINT_EVENT(prov_name, t_name, args, fields)
       #define TRACEPOINT_EVENT_CLASS(prov_name, class_name, args, fields)
       #define TRACEPOINT_EVENT_INSTANCE(prov_name, class_name, t_name, args)
       #define TRACEPOINT_LOGLEVEL(prov_name, t_name, level)
       #define ctf_array(int_type, field_name, expr, count)
       #define ctf_array_nowrite(int_type, field_name, expr, count)
       #define ctf_array_hex(int_type, field_name, expr, count)
       #define ctf_array_nowrite_hex(int_type, field_name, expr, count)
       #define ctf_array_network(int_type, field_name, expr, count)
       #define ctf_array_network_nowrite(int_type, field_name, expr, count)
       #define ctf_array_network_hex(int_type, field_name, expr, count)
       #define ctf_array_network_nowrite_hex(int_type, field_name, expr, count)
       #define ctf_array_text(char, field_name, expr, count)
       #define ctf_array_text_nowrite(char, field_name, expr, count)
       #define ctf_enum(prov_name, enum_name, int_type, field_name, expr)
       #define ctf_enum_nowrite(prov_name, enum_name, int_type, field_name,
                                expr)
       #define ctf_enum_value(label, value)
       #define ctf_enum_range(label, start, end)
       #define ctf_float(float_type, field_name, expr)
       #define ctf_float_nowrite(float_type, field_name, expr)
       #define ctf_integer(int_type, field_name, expr)
       #define ctf_integer_hex(int_type, field_name, expr)
       #define ctf_integer_network(int_type, field_name, expr)
       #define ctf_integer_network_hex(int_type, field_name, expr)
       #define ctf_integer_nowrite(int_type, field_name, expr)
       #define ctf_sequence(int_type, field_name, expr, len_type, len_expr)
       #define ctf_sequence_nowrite(int_type, field_name, expr, len_type,
                                    len_expr)
       #define ctf_sequence_hex(int_type, field_name, expr, len_type,
                                len_expr)
       #define ctf_sequence_nowrite_hex(int_type, field_name, expr, len_type,
                                        len_expr)
       #define ctf_sequence_network(int_type, field_name, expr, len_type,
                                    len_expr)
       #define ctf_sequence_network_nowrite(int_type, field_name, expr,
                                            len_type, len_expr)
       #define ctf_sequence_network_hex(int_type, field_name, expr, len_type,
                                        len_expr)
       #define ctf_sequence_network_nowrite_hex(int_type, field_name, expr,
                                                len_type, len_expr)
       #define ctf_sequence_text(char, field_name, expr, len_type, len_expr)
       #define ctf_sequence_text_nowrite(char, field_name, expr, len_type,
                                         len_expr)
       #define ctf_string(field_name, expr)
       #define ctf_string_nowrite(field_name, expr)
       #define do_tracepoint(prov_name, t_name, ...)
       #define tracepoint(prov_name, t_name, ...)
       #define tracepoint_enabled(prov_name, t_name)

       Link with -llttng-ust -ldl, following this man page.

DESCRIPTION         top

       The Linux Trace Toolkit: next generation <http://lttng.org/> is
       an open source software package used for correlated tracing of
       the Linux kernel, user applications, and user libraries.

       LTTng-UST is the user space tracing component of the LTTng
       project. It is a port to user space of the low-overhead tracing
       capabilities of the LTTng Linux kernel tracer. The liblttng-ust
       library is used to trace user applications and libraries.

           Note
           This man page is about the liblttng-ust library. The
           LTTng-UST project also provides Java and Python packages to
           trace applications written in those languages. How to
           instrument and trace Java and Python applications is
           documented in the online LTTng documentation
           <http://lttng.org/docs/>.

       There are three ways to use liblttng-ust:

       •   Using the tracef(3) API, which is similar to printf(3).

       •   Using the tracelog(3) API, which is tracef(3) with a log
           level parameter.

       •   Defining your own tracepoints. See the Creating a tracepoint
           provider section below.

   Creating a tracepoint provider
       Creating a tracepoint provider is the first step of using
       liblttng-ust. The next steps are:

       •   Instrumenting your application with tracepoint() calls

       •   Building your application with LTTng-UST support, either
           statically or dynamically.

       A tracepoint provider is a compiled object containing the event
       probes corresponding to your custom tracepoint definitions. A
       tracepoint provider contains the code to get the size of an event
       and to serialize it, amongst other things.

       To create a tracepoint provider, start with the following
       tracepoint provider header template:

           #undef TRACEPOINT_PROVIDER
           #define TRACEPOINT_PROVIDER my_provider

           #undef TRACEPOINT_INCLUDE
           #define TRACEPOINT_INCLUDE "./tp.h"

           #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
           #define _TP_H

           #include <lttng/tracepoint.h>

           /*
            * TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
            * TRACEPOINT_EVENT_INSTANCE(), TRACEPOINT_LOGLEVEL(),
            * and `TRACEPOINT_ENUM()` are used here.
            */

           #endif /* _TP_H */

           #include <lttng/tracepoint-event.h>

       In this template, the tracepoint provider is named my_provider
       (TRACEPOINT_PROVIDER definition). The file needs to bear the name
       of the TRACEPOINT_INCLUDE definition (tp.h in this case). Between
       #include <lttng/tracepoint.h> and #endif go the invocations of
       the TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
       TRACEPOINT_EVENT_INSTANCE(), TRACEPOINT_LOGLEVEL(), and
       TRACEPOINT_ENUM() macros.

           Note
           You can avoid writing the prologue and epilogue boilerplate
           in the template file above by using the lttng-gen-tp(1) tool
           shipped with LTTng-UST.

       The tracepoint provider header file needs to be included in a
       source file which looks like this:

           #define TRACEPOINT_CREATE_PROBES

           #include "tp.h"

       Together, those two files (let’s call them tp.h and tp.c) form
       the tracepoint provider sources, ready to be compiled.

       You can create multiple tracepoint providers to be used in a
       single application, but each one must have its own header file.

       The TRACEPOINT_EVENT() usage section below shows how to use the
       TRACEPOINT_EVENT() macro to define the actual tracepoints in the
       tracepoint provider header file.

       See the EXAMPLE section below for a complete example.

   TRACEPOINT_EVENT() usage
       The TRACEPOINT_EVENT() macro is used in a template provider
       header file (see the Creating a tracepoint provider section
       above) to define LTTng-UST tracepoints.

       The TRACEPOINT_EVENT() usage template is as follows:

           TRACEPOINT_EVENT(
               /* Tracepoint provider name */
               my_provider,

               /* Tracepoint/event name */
               my_tracepoint,

               /* List of tracepoint arguments (input) */
               TP_ARGS(
                   ...
               ),

               /* List of fields of eventual event (output) */
               TP_FIELDS(
                   ...
               )
           )

       The TP_ARGS() macro contains the input arguments of the
       tracepoint. Those arguments can be used in the argument
       expressions of the output fields defined in TP_FIELDS().

       The format of the TP_ARGS() parameters is: C type, then argument
       name; repeat as needed, up to ten times. For example:

           TP_ARGS(
               int, my_int,
               const char *, my_string,
               FILE *, my_file,
               double, my_float,
               struct my_data *, my_data
           )

       The TP_FIELDS() macro contains the output fields of the
       tracepoint, that is, the actual data that can be recorded in the
       payload of an event emitted by this tracepoint.

       The TP_FIELDS() macro contains a list of ctf_*() macros NOT
       separated by commas. The available macros are documented in the
       Available ctf_*() field type macros section below.

   Available ctf_*() field type macros
       This section documents the available ctf_*() macros that can be
       inserted in the TP_FIELDS() macro of the TRACEPOINT_EVENT()
       macro.

       Standard integer, displayed in base 10:

           ctf_integer(int_type, field_name, expr)
           ctf_integer_nowrite(int_type, field_name, expr)

       Standard integer, displayed in base 16:

           ctf_integer_hex(int_type, field_name, expr)

       Integer in network byte order (big endian), displayed in base 10:

           ctf_integer_network(int_type, field_name, expr)

       Integer in network byte order, displayed in base 16:

           ctf_integer_network_hex(int_type, field_name, expr)

       Floating point number:

           ctf_float(float_type, field_name, expr)
           ctf_float_nowrite(float_type, field_name, expr)

       Null-terminated string:

           ctf_string(field_name, expr)
           ctf_string_nowrite(field_name, expr)

       Statically-sized array of integers (_hex versions displayed in
       hexadecimal, _network versions in network byte order):

           ctf_array(int_type, field_name, expr, count)
           ctf_array_nowrite(int_type, field_name, expr, count)
           ctf_array_hex(int_type, field_name, expr, count)
           ctf_array_nowrite_hex(int_type, field_name, expr, count)
           ctf_array_network(int_type, field_name, expr, count)
           ctf_array_network_nowrite(int_type, field_name, expr, count)
           ctf_array_network_hex(int_type, field_name, expr, count)
           ctf_array_network_nowrite_hex(int_type, field_name, expr, count)

       Statically-sized array, printed as text; no need to be
       null-terminated:

           ctf_array_text(char, field_name, expr, count)
           ctf_array_text_nowrite(char, field_name, expr, count)

       Dynamically-sized array of integers (_hex versions displayed in
       hexadecimal, _network versions in network byte order):

           ctf_sequence(int_type, field_name, expr, len_type, len_expr)
           ctf_sequence_nowrite(int_type, field_name, expr, len_type, len_expr)
           ctf_sequence_hex(int_type, field_name, expr, len_type, len_expr)
           ctf_sequence_nowrite_hex(int_type, field_name, expr, len_type,
                                    len_expr)
           ctf_sequence_network(int_type, field_name, expr, len_type, len_expr)
           ctf_sequence_network_nowrite(int_type, field_name, expr, len_type,
                                        len_expr)
           ctf_sequence_network_hex(int_type, field_name, expr, len_type,
                                    len_expr)
           ctf_sequence_network_nowrite_hex(int_type, field_name, expr,
                                            len_type, len_expr)

       Dynamically-sized array, displayed as text; no need to be
       null-terminated:

           ctf_sequence_text(char, field_name, expr, len_type, len_expr)
           ctf_sequence_text_nowrite(char, field_name, expr, len_type, len_expr)

       Enumeration. The enumeration field must be defined before using
       this macro with the TRACEPOINT_ENUM() macro. See the
       TRACEPOINT_ENUM() usage section for more information.

           ctf_enum(prov_name, enum_name, int_type, field_name, expr)
           ctf_enum_nowrite(prov_name, enum_name, int_type, field_name, expr)

       The parameters are:

       count
           Number of elements in array/sequence. This must be known at
           compile time.

       enum_name
           Name of an enumeration field previously defined with the
           TRACEPOINT_ENUM() macro. See the TRACEPOINT_ENUM() usage
           section for more information.

       expr
           C expression resulting in the field’s value. This expression
           can use one or more arguments passed to the tracepoint. The
           arguments of a given tracepoint are defined in the TP_ARGS()
           macro (see the Creating a tracepoint provider section above).

       field_name
           Event field name (C identifier syntax, NOT a literal string).

       float_type
           Float C type (float or double). The size of this type
           determines the size of the floating point number field.

       int_type
           Integer C type. The size of this type determines the size of
           the integer/enumeration field.

       len_expr
           C expression resulting in the sequence’s length. This
           expression can use one or more arguments passed to the
           tracepoint.

       len_type
           Unsigned integer C type of sequence’s length.

       prov_name
           Tracepoint provider name. This must be the same as the
           tracepoint provider name used in a previous field definition.

       The _nowrite versions omit themselves from the recorded trace,
       but are otherwise identical. Their primary purpose is to make
       some of the event context available to the event filters without
       having to commit the data to sub-buffers. See
       lttng-enable-event(1) to learn more about dynamic event
       filtering.

       See the EXAMPLE section below for a complete example.

   TRACEPOINT_ENUM() usage
       An enumeration field is a list of mappings between an integers,
       or a range of integers, and strings (sometimes called labels or
       enumerators). Enumeration fields can be used to have a more
       compact trace when the possible values for a field are limited.

       An enumeration field is defined with the TRACEPOINT_ENUM() macro:

           TRACEPOINT_ENUM(
               /* Tracepoint provider name */
               my_provider,

               /* Enumeration name (unique in the whole tracepoint provider) */
               my_enum,

               /* Enumeration mappings */
               TP_ENUM_VALUES(
                   ...
               )
           )

       TP_ENUM_VALUES() contains a list of enumeration mappings, NOT
       separated by commas. Two macros can be used in the
       TP_ENUM_VALUES(): ctf_enum_value() and ctf_enum_range().

       ctf_enum_value() is a single value mapping:

           ctf_enum_value(label, value)

       This macro maps the given label string to the value value.

       ctf_enum_range() is a range mapping:

           ctf_enum_range(label, start, end)

       This macro maps the given label string to the range of integers
       from start to end, inclusively. Range mappings may overlap, but
       the behaviour is implementation-defined: each trace reader
       handles overlapping ranges as it wishes.

       See the EXAMPLE section below for a complete example.

   TRACEPOINT_EVENT_CLASS() usage
       A tracepoint class is a class of tracepoints sharing the same
       field types and names. A tracepoint instance is one instance of
       such a declared tracepoint class, with its own event name.

       LTTng-UST creates one event serialization function per tracepoint
       class. Using TRACEPOINT_EVENT() creates one tracepoint class per
       tracepoint definition, whereas using TRACEPOINT_EVENT_CLASS() and
       TRACEPOINT_EVENT_INSTANCE() creates one tracepoint class, and one
       or more tracepoint instances of this class. In other words, many
       tracepoints can reuse the same serialization code. Reusing the
       same code, when possible, can reduce cache pollution, thus
       improve performance.

       The TRACEPOINT_EVENT_CLASS() macro accepts the same parameters as
       the TRACEPOINT_EVENT() macro, except that instead of an event
       name, its second parameter is the tracepoint class name:

           TRACEPOINT_EVENT_CLASS(
               /* Tracepoint provider name */
               my_provider,

               /* Tracepoint class name */
               my_tracepoint_class,

               /* List of tracepoint arguments (input) */
               TP_ARGS(
                   ...
               ),

               /* List of fields of eventual event (output) */
               TP_FIELDS(
                   ...
               )
           )

       Once the tracepoint class is defined, you can create as many
       tracepoint instances as needed:

           TRACEPOINT_EVENT_INSTANCE(
               /* Tracepoint provider name */
               my_provider,

               /* Tracepoint class name */
               my_tracepoint_class,

               /* Tracepoint/event name */
               my_tracepoint,

               /* List of tracepoint arguments (input) */
               TP_ARGS(
                   ...
               )
           )

       As you can see, the TRACEPOINT_EVENT_INSTANCE() does not contain
       the TP_FIELDS() macro, because they are defined at the
       TRACEPOINT_EVENT_CLASS() level.

       See the EXAMPLE section below for a complete example.

   TRACEPOINT_LOGLEVEL() usage
       Optionally, a log level can be assigned to a defined tracepoint.
       Assigning different levels of severity to tracepoints can be
       useful: when controlling tracing sessions, you can choose to only
       enable events falling into a specific log level range using the
       --loglevel and --loglevel-only options of the
       lttng-enable-event(1) command.

       Log levels are assigned to tracepoints that are already defined
       using the TRACEPOINT_LOGLEVEL() macro. The latter must be used
       after having used TRACEPOINT_EVENT() or
       TRACEPOINT_EVENT_INSTANCE() for a given tracepoint. The
       TRACEPOINT_LOGLEVEL() macro is used as follows:

           TRACEPOINT_LOGLEVEL(
               /* Tracepoint provider name */
               my_provider,

               /* Tracepoint/event name */
               my_tracepoint,

               /* Log level */
               TRACE_INFO
           )

       The available log level definitions are:

       TRACE_EMERG
           System is unusable.

       TRACE_ALERT
           Action must be taken immediately.

       TRACE_CRIT
           Critical conditions.

       TRACE_ERR
           Error conditions.

       TRACE_WARNING
           Warning conditions.

       TRACE_NOTICE
           Normal, but significant, condition.

       TRACE_INFO
           Informational message.

       TRACE_DEBUG_SYSTEM
           Debug information with system-level scope (set of programs).

       TRACE_DEBUG_PROGRAM
           Debug information with program-level scope (set of
           processes).

       TRACE_DEBUG_PROCESS
           Debug information with process-level scope (set of modules).

       TRACE_DEBUG_MODULE
           Debug information with module (executable/library) scope (set
           of units).

       TRACE_DEBUG_UNIT
           Debug information with compilation unit scope (set of
           functions).

       TRACE_DEBUG_FUNCTION
           Debug information with function-level scope.

       TRACE_DEBUG_LINE
           Debug information with line-level scope (default log level).

       TRACE_DEBUG
           Debug-level message.

       See the EXAMPLE section below for a complete example.

   Instrumenting your application
       Once the tracepoint provider is created (see the Creating a
       tracepoint provider section above), you can instrument your
       application with the defined tracepoints thanks to the
       tracepoint() macro:

           #define tracepoint(prov_name, t_name, ...)

       With:

       prov_name
           Tracepoint provider name.

       t_name
           Tracepoint/event name.

       ...
           Tracepoint arguments, if any.

       Make sure to include the tracepoint provider header file anywhere
       you use tracepoint() for this provider.

           Note
           Even though LTTng-UST supports tracepoint() call site
           duplicates having the same provider and tracepoint names, it
           is recommended to use a provider/tracepoint name pair only
           once within the application source code to help map events
           back to their call sites when analyzing the trace.

       Sometimes, arguments to the tracepoint are expensive to compute
       (take call stack, for example). To avoid the computation when the
       tracepoint is disabled, you can use the tracepoint_enabled() and
       do_tracepoint() macros:

           #define tracepoint_enabled(prov_name, t_name)
           #define do_tracepoint(prov_name, t_name, ...)

       tracepoint_enabled() returns a non-zero value if the tracepoint
       named t_name from the provider named prov_name is enabled at run
       time.

       do_tracepoint() is like tracepoint(), except that it doesn’t
       check if the tracepoint is enabled. Using tracepoint() with
       tracepoint_enabled() is dangerous since tracepoint() also
       contains the tracepoint_enabled() check, thus a race condition is
       possible in this situation:

           if (tracepoint_enabled(my_provider, my_tracepoint)) {
               stuff = prepare_stuff();
           }

           tracepoint(my_provider, my_tracepoint, stuff);

       If the tracepoint is enabled after the condition, then stuff is
       not prepared: the emitted event will either contain wrong data,
       or the whole application could crash (segmentation fault, for
       example).

           Note
           Neither tracepoint_enabled() nor do_tracepoint() have a
           STAP_PROBEV() call, so if you need it, you should emit this
           call yourself.

   Statically linking the tracepoint provider
       With the static linking method, compiled tracepoint providers are
       copied into the target application.

       Define TRACEPOINT_DEFINE definition below the
       TRACEPOINT_CREATE_PROBES definition in the tracepoint provider
       source:

           #define TRACEPOINT_CREATE_PROBES
           #define TRACEPOINT_DEFINE

           #include "tp.h"

       Create the tracepoint provider object file:

           $ cc -c -I. tp.c

           Note
           Although an application instrumented with LTTng-UST
           tracepoints can be compiled with a C++ compiler, tracepoint
           probes should be compiled with a C compiler.

       At this point, you can archive this tracepoint provider object
       file, possibly with other object files of your application or
       with other tracepoint provider object files, as a static library:

           $ ar rc tp.a tp.o

       Using a static library does have the advantage of centralising
       the tracepoint providers objects so they can be shared between
       multiple applications. This way, when the tracepoint provider is
       modified, the source code changes don’t have to be patched into
       each application’s source code tree. The applications need to be
       relinked after each change, but need not to be otherwise
       recompiled (unless the tracepoint provider’s API changes).

       Then, link your application with this object file (or with the
       static library containing it) and with liblttng-ust and libdl
       (libc on a BSD system):

           $ cc -o app tp.o app.o -llttng-ust -ldl

   Dynamically loading the tracepoint provider
       The second approach to package the tracepoint provider is to use
       the dynamic loader: the library and its member functions are
       explicitly sought, loaded at run time.

       In this scenario, the tracepoint provider is compiled as a shared
       object.

       The process to create the tracepoint provider shared object is
       pretty much the same as the static linking method, except that:

       •   Since the tracepoint provider is not part of the application,
           TRACEPOINT_DEFINE must be defined, for each tracepoint
           provider, in exactly one source file of the applicationTRACEPOINT_PROBE_DYNAMIC_LINKAGE must be defined next to
           TRACEPOINT_DEFINE

       Regarding TRACEPOINT_DEFINE and TRACEPOINT_PROBE_DYNAMIC_LINKAGE,
       the recommended practice is to use a separate C source file in
       your application to define them, then include the tracepoint
       provider header files afterwards. For example, as tp-define.c:

           #define TRACEPOINT_DEFINE
           #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE

           #include "tp.h"

       The tracepoint provider object file used to create the shared
       library is built like it is using the static linking method, but
       with the -fpic option:

           $ cc -c -fpic -I. tp.c

       It is then linked as a shared library like this:

           $ cc -shared -Wl,--no-as-needed -o tp.so tp.o -llttng-ust

       This tracepoint provider shared object isn’t linked with the user
       application: it must be loaded manually. This is why the
       application is built with no mention of this tracepoint provider,
       but still needs libdl:

           $ cc -o app app.o tp-define.o -ldl

       There are two ways to dynamically load the tracepoint provider
       shared object:

       •   Load it manually from the application using dlopen(3)

       •   Make the dynamic loader load it with the LD_PRELOAD
           environment variable (see ld.so(8))

       If the application does not dynamically load the tracepoint
       provider shared object using one of the methods above, tracing is
       disabled for this application, and the events are not listed in
       the output of lttng-list(1).

       Note that it is not safe to use dlclose(3) on a tracepoint
       provider shared object that is being actively used for tracing,
       due to a lack of reference counting from LTTng-UST to the shared
       object.

       For example, statically linking a tracepoint provider to a shared
       object which is to be dynamically loaded by an application (a
       plugin, for example) is not safe: the shared object, which
       contains the tracepoint provider, could be dynamically closed (‐
       dlclose(3)) at any time by the application.

       To instrument a shared object, either:

       •   Statically link the tracepoint provider to the application,
           or

       •   Build the tracepoint provider as a shared object (following
           the procedure shown in this section), and preload it when
           tracing is needed using the LD_PRELOAD environment variable.

   Using LTTng-UST with daemons
       Some extra care is needed when using liblttng-ust with daemon
       applications that call fork(2), clone(2), or BSD’s rfork(2)
       without a following exec(3) family system call. The library
       liblttng-ust-fork.so needs to be preloaded before starting the
       application with the LD_PRELOAD environment variable (see
       ld.so(8)).

       To use liblttng-ust with a daemon application which closes file
       descriptors that were not opened by it, preload the liblttng-ust-
       fd.so library before you start the application. Typical use cases
       include daemons closing all file descriptors after fork(2), and
       buggy applications doing “double-closes”.

   Context information
       Context information can be prepended by the LTTng-UST tracer
       before each event, or before specific events.

       Context fields can be added to specific channels using
       lttng-add-context(1).

       The following context fields are supported by LTTng-UST:

       cpu_id
           CPU ID.

               Note
               This context field is always enabled, and it cannot be
               added with lttng-add-context(1). Its main purpose is to
               be used for dynamic event filtering. See
               lttng-enable-event(1) for more information about event
               filtering.

       ip
           Instruction pointer: enables recording the exact address from
           which an event was emitted. This context field can be used to
           reverse-lookup the source location that caused the event to
           be emitted.

       perf:thread:COUNTER
           perf counter named COUNTER. Use lttng add-context --list to
           list the available perf counters.

           Only available on IA-32 and x86-64 architectures.

       perf:thread:raw:rN:NAME
           perf counter with raw ID N and custom name NAME. See
           lttng-add-context(1) for more details.

       pthread_id
           POSIX thread identifier. Can be used on architectures where
           pthread_t maps nicely to an unsigned long type.

       procname
           Thread name, as set by exec(3) or prctl(2). It is recommended
           that programs set their thread name with prctl(2) before
           hitting the first tracepoint for that thread.

       vpid
           Virtual process ID: process ID as seen from the point of view
           of the process namespace.

       vtid
           Virtual thread ID: thread ID as seen from the point of view
           of the process namespace.

   LTTng-UST state dump
       If an application that uses liblttng-ust becomes part of a
       tracing session, information about its currently loaded shared
       objects, their build IDs, and their debug link information are
       emitted as events by the tracer.

       The following LTTng-UST state dump events exist and must be
       enabled to record application state dumps. Note that, during the
       state dump phase, LTTng-UST can also emit shared library
       load/unload events (see Shared library load/unload tracking
       below).

       lttng_ust_statedump:start
           Emitted when the state dump begins.

           This event has no fields.

       lttng_ust_statedump:end
           Emitted when the state dump ends. Once this event is emitted,
           it is guaranteed that, for a given process, the state dump is
           complete.

           This event has no fields.

       lttng_ust_statedump:bin_info
           Emitted when information about a currently loaded executable
           or shared object is found.

           Fields:

           ┌───────────────┬────────────────────────────────┐
           │Field name     Description                    │
           ├───────────────┼────────────────────────────────┤
           │baddr          │ Base address of loaded         │
           │               │ executable.                    │
           ├───────────────┼────────────────────────────────┤
           │memsz          │ Size of loaded                 │
           │               │ executable in memory.          │
           ├───────────────┼────────────────────────────────┤
           │path           │ Path to loaded                 │
           │               │ executable file.               │
           ├───────────────┼────────────────────────────────┤
           │is_pic         │ Whether or not the             │
           │               │ executable is                  │
           │               │ position-independent           │
           │               │ code.                          │
           ├───────────────┼────────────────────────────────┤
           │has_build_id   │ Whether or not the             │
           │               │ executable has a build         │
           │               │ ID. If this field is 1,        │
           │               │ you can expect that an         │
           │               │ lttng_ust_statedump:build_id   │
           │               │ event record follows           │
           │               │ this one (not                  │
           │               │ necessarily immediately        │
           │               │ after).                        │
           ├───────────────┼────────────────────────────────┤
           │has_debug_link │ Whether or not the             │
           │               │ executable has debug link      │
           │               │ information. If this field     │
           │               │ is 1, you can expect that an   │
           │               │ lttng_ust_statedump:debug_link │
           │               │ event record follows this      │
           │               │ one (not necessarily           │
           │               │ immediately after).            │
           └───────────────┴────────────────────────────────┘

       lttng_ust_statedump:build_id
           Emitted when a build ID is found in a currently loaded shared
           library. See Debugging Information in Separate Files
           <https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-
           Files.html> for more information about build IDs.

           Fields:

           ┌───────────┬────────────────────────┐
           │Field name Description            │
           ├───────────┼────────────────────────┤
           │baddr      │ Base address of loaded │
           │           │ library.               │
           ├───────────┼────────────────────────┤
           │build_id   │ Build ID.              │
           └───────────┴────────────────────────┘

       lttng_ust_statedump:debug_link
           Emitted when debug link information is found in a currently
           loaded shared library. See Debugging Information in Separate
           Files <https://sourceware.org/gdb/onlinedocs/gdb/Separate-
           Debug-Files.html> for more information about debug links.

           Fields:

           ┌───────────┬────────────────────────┐
           │Field name Description            │
           ├───────────┼────────────────────────┤
           │baddr      │ Base address of loaded │
           │           │ library.               │
           ├───────────┼────────────────────────┤
           │crc        │ Debug link file’s CRC. │
           ├───────────┼────────────────────────┤
           │filename   │ Debug link file name.  │
           └───────────┴────────────────────────┘

   Shared library load/unload tracking
       The LTTng-UST state dump and the LTTng-UST helper library to
       instrument the dynamic linker (see liblttng-ust-dl(3)) can emit
       shared library load/unload tracking events.

       The following shared library load/unload tracking events exist
       and must be enabled to track the loading and unloading of shared
       libraries:

       lttng_ust_lib:load
           Emitted when a shared library (shared object) is loaded.

           Fields:

           ┌───────────────┬──────────────────────────┐
           │Field name     Description              │
           ├───────────────┼──────────────────────────┤
           │baddr          │ Base address of loaded   │
           │               │ library.                 │
           ├───────────────┼──────────────────────────┤
           │memsz          │ Size of loaded library   │
           │               │ in memory.               │
           ├───────────────┼──────────────────────────┤
           │path           │ Path to loaded library   │
           │               │ file.                    │
           ├───────────────┼──────────────────────────┤
           │has_build_id   │ Whether or not the       │
           │               │ library has a build ID.  │
           │               │ If this field is 1, you  │
           │               │ can expect that an       │
           │               │ lttng_ust_lib:build_id   │
           │               │ event record follows     │
           │               │ this one (not            │
           │               │ necessarily immediately  │
           │               │ after).                  │
           ├───────────────┼──────────────────────────┤
           │has_debug_link │ Whether or not the       │
           │               │ library has debug link   │
           │               │ information. If this     │
           │               │ field is 1, you can      │
           │               │ expect that an           │
           │               │ lttng_ust_lib:debug_link │
           │               │ event record follows     │
           │               │ this one (not            │
           │               │ necessarily immediately  │
           │               │ after).                  │
           └───────────────┴──────────────────────────┘

       lttng_ust_lib:unload
           Emitted when a shared library (shared object) is unloaded.

           Fields:

           ┌───────────┬──────────────────────────┐
           │Field name Description              │
           ├───────────┼──────────────────────────┤
           │baddr      │ Base address of unloaded │
           │           │ library.                 │
           └───────────┴──────────────────────────┘

       lttng_ust_lib:build_id
           Emitted when a build ID is found in a loaded shared library
           (shared object). See Debugging Information in Separate Files
           <https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-
           Files.html> for more information about build IDs.

           Fields:

           ┌───────────┬────────────────────────┐
           │Field name Description            │
           ├───────────┼────────────────────────┤
           │baddr      │ Base address of loaded │
           │           │ library.               │
           ├───────────┼────────────────────────┤
           │build_id   │ Build ID.              │
           └───────────┴────────────────────────┘

       lttng_ust_lib:debug_link
           Emitted when debug link information is found in a loaded
           shared library (shared object). See Debugging Information in
           Separate Files
           <https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-
           Files.html> for more information about debug links.

           Fields:

           ┌───────────┬────────────────────────┐
           │Field name Description            │
           ├───────────┼────────────────────────┤
           │baddr      │ Base address of loaded │
           │           │ library.               │
           ├───────────┼────────────────────────┤
           │crc        │ Debug link file’s CRC. │
           ├───────────┼────────────────────────┤
           │filename   │ Debug link file name.  │
           └───────────┴────────────────────────┘

   Detect if LTTng-UST is loaded
       To detect if liblttng-ust is loaded from an application:

        1. Define the lttng_ust_loaded weak symbol globally:

               int lttng_ust_loaded __attribute__((weak));

           This weak symbol is set by the constructor of liblttng-ust.

        2. Test lttng_ust_loaded where needed:

               /* ... */

               if (lttng_ust_loaded) {
                   /* LTTng-UST is loaded */
               } else {
                   /* LTTng-UST is NOT loaded */
               }

               /* ... */

EXAMPLE         top

           Note
           A few examples are available in the doc/examples
           <https://github.com/lttng/lttng-
           ust/tree/v2.10.6/doc/examples> directory of LTTng-UST’s
           source tree.

       This example shows all the features documented in the previous
       sections. The static linking method is chosen here to link the
       application with the tracepoint provider.

       You can compile the source files and link them together
       statically like this:

           $ cc -c -I. tp.c
           $ cc -c app.c
           $ cc -o app tp.o app.o -llttng-ust -ldl

       Using the lttng(1) tool, create an LTTng tracing session, enable
       all the events of this tracepoint provider, and start tracing:

           $ lttng create my-session
           $ lttng enable-event --userspace 'my_provider:*'
           $ lttng start

       You may also enable specific events:

           $ lttng enable-event --userspace my_provider:big_event
           $ lttng enable-event --userspace my_provider:event_instance2

       Run the application:

           $ ./app some arguments

       Stop the current tracing session and inspect the recorded events:

           $ lttng stop
           $ lttng view

   Tracepoint provider header file
       tp.h:

           #undef TRACEPOINT_PROVIDER
           #define TRACEPOINT_PROVIDER my_provider

           #undef TRACEPOINT_INCLUDE
           #define TRACEPOINT_INCLUDE "./tp.h"

           #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
           #define _TP_H

           #include <lttng/tracepoint.h>
           #include <stdio.h>

           #include "app.h"

           TRACEPOINT_EVENT(
               my_provider,
               simple_event,
               TP_ARGS(
                   int, my_integer_arg,
                   const char *, my_string_arg
               ),
               TP_FIELDS(
                   ctf_string(argc, my_string_arg)
                   ctf_integer(int, argv, my_integer_arg)
               )
           )

           TRACEPOINT_ENUM(
               my_provider,
               my_enum,
               TP_ENUM_VALUES(
                   ctf_enum_value("ZERO", 0)
                   ctf_enum_value("ONE", 1)
                   ctf_enum_value("TWO", 2)
                   ctf_enum_range("A RANGE", 52, 125)
                   ctf_enum_value("ONE THOUSAND", 1000)
               )
           )

           TRACEPOINT_EVENT(
               my_provider,
               big_event,
               TP_ARGS(
                   int, my_integer_arg,
                   const char *, my_string_arg,
                   FILE *, stream,
                   double, flt_arg,
                   int *, array_arg
               ),
               TP_FIELDS(
                   ctf_integer(int, int_field1, my_integer_arg * 2)
                   ctf_integer_hex(long int, stream_pos, ftell(stream))
                   ctf_float(double, float_field, flt_arg)
                   ctf_string(string_field, my_string_arg)
                   ctf_array(int, array_field, array_arg, 7)
                   ctf_array_text(char, array_text_field, array_arg, 5)
                   ctf_sequence(int, seq_field, array_arg, int,
                                my_integer_arg / 10)
                   ctf_sequence_text(char, seq_text_field, array_arg,
                                     int, my_integer_arg / 5)
                   ctf_enum(my_provider, my_enum, int,
                            enum_field, array_arg[1])
               )
           )

           TRACEPOINT_LOGLEVEL(my_provider, big_event, TRACE_WARNING)

           TRACEPOINT_EVENT_CLASS(
               my_provider,
               my_tracepoint_class,
               TP_ARGS(
                   int, my_integer_arg,
                   struct app_struct *, app_struct_arg
               ),
               TP_FIELDS(
                   ctf_integer(int, a, my_integer_arg)
                   ctf_integer(unsigned long, b, app_struct_arg->b)
                   ctf_string(c, app_struct_arg->c)
               )
           )

           TRACEPOINT_EVENT_INSTANCE(
               my_provider,
               my_tracepoint_class,
               event_instance1,
               TP_ARGS(
                   int, my_integer_arg,
                   struct app_struct *, app_struct_arg
               )
           )

           TRACEPOINT_EVENT_INSTANCE(
               my_provider,
               my_tracepoint_class,
               event_instance2,
               TP_ARGS(
                   int, my_integer_arg,
                   struct app_struct *, app_struct_arg
               )
           )

           TRACEPOINT_LOGLEVEL(my_provider, event_instance2, TRACE_INFO)

           TRACEPOINT_EVENT_INSTANCE(
               my_provider,
               my_tracepoint_class,
               event_instance3,
               TP_ARGS(
                   int, my_integer_arg,
                   struct app_struct *, app_struct_arg
               )
           )

           #endif /* _TP_H */

           #include <lttng/tracepoint-event.h>

   Tracepoint provider source file
       tp.c:

           #define TRACEPOINT_CREATE_PROBES
           #define TRACEPOINT_DEFINE

           #include "tp.h"

   Application header file
       app.h:

           #ifndef _APP_H
           #define _APP_H

           struct app_struct {
               unsigned long b;
               const char *c;
               double d;
           };

           #endif /* _APP_H */

   Application source file
       app.c:

           #include <stdlib.h>
           #include <stdio.h>

           #include "tp.h"
           #include "app.h"

           static int array_of_ints[] = {
               100, -35, 1, 23, 14, -6, 28, 1001, -3000,
           };

           int main(int argc, char* argv[])
           {
               FILE *stream;
               struct app_struct app_struct;

               tracepoint(my_provider, simple_event, argc, argv[0]);
               stream = fopen("/tmp/app.txt", "w");

               if (!stream) {
                   fprintf(stderr,
                           "Error: Cannot open /tmp/app.txt for writing\n");
                   return EXIT_FAILURE;
               }

               if (fprintf(stream, "0123456789") != 10) {
                   fclose(stream);
                   fprintf(stderr, "Error: Cannot write to /tmp/app.txt\n");
                   return EXIT_FAILURE;
               }

               tracepoint(my_provider, big_event, 35, "hello tracepoint",
                          stream, -3.14, array_of_ints);
               fclose(stream);
               app_struct.b = argc;
               app_struct.c = "[the string]";
               tracepoint(my_provider, event_instance1, 23, &app_struct);
               app_struct.b = argc * 5;
               app_struct.c = "[other string]";
               tracepoint(my_provider, event_instance2, 17, &app_struct);
               app_struct.b = 23;
               app_struct.c = "nothing";
               tracepoint(my_provider, event_instance3, -52, &app_struct);

               return EXIT_SUCCESS;
           }

ENVIRONMENT VARIABLES         top

       LTTNG_HOME
           Alternative user’s home directory. This variable is useful
           when the user running the instrumented application has a
           non-writable home directory.

           Unix sockets used for the communication between liblttng-ust
           and the LTTng session and consumer daemons (part of the
           LTTng-tools project) are located in a specific directory
           under $LTTNG_HOME (or $HOME if $LTTNG_HOME is not set).

       LTTNG_UST_ALLOW_BLOCKING
           If set, allow the application to retry event tracing when
           there’s no space left for the event record in the sub-buffer,
           therefore effectively blocking the application until space is
           made available or the configured timeout is reached.

           To allow an application to block during tracing, you also
           need to specify a blocking timeout when you create a channel
           with the --blocking-timeout option of the
           lttng-enable-channel(1) command.

           This option can be useful in workloads generating very large
           trace data throughput, where blocking the application is an
           acceptable trade-off to prevent discarding event records.

               Warning
               Setting this environment variable may significantly
               affect application timings.

       LTTNG_UST_CLOCK_PLUGIN
           Path to the shared object which acts as the clock override
           plugin. An example of such a plugin can be found in the
           LTTng-UST documentation under examples/clock-override
           <https://github.com/lttng/lttng-
           ust/tree/v2.10.6/doc/examples/clock-override>.

       LTTNG_UST_DEBUG
           If set, enable liblttng-ust's debug and error output.

       LTTNG_UST_GETCPU_PLUGIN
           Path to the shared object which acts as the getcpu() override
           plugin. An example of such a plugin can be found in the
           LTTng-UST documentation under examples/getcpu-override
           <https://github.com/lttng/lttng-
           ust/tree/v2.10.6/doc/examples/getcpu-override>.

       LTTNG_UST_REGISTER_TIMEOUT
           Waiting time for the registration done session daemon command
           before proceeding to execute the main program (milliseconds).

           The value 0 means do not wait. The value -1 means wait
           forever. Setting this environment variable to 0 is
           recommended for applications with time constraints on the
           process startup time.

           Default: 3000.

       LTTNG_UST_WITHOUT_BADDR_STATEDUMP
           If set, prevents liblttng-ust from performing a base address
           state dump (see the LTTng-UST state dump section above).

BUGS         top

       If you encounter any issue or usability problem, please report it
       on the LTTng bug tracker <https://bugs.lttng.org/projects/lttng-
       ust>.

RESOURCES         top

       •   LTTng project website <http://lttng.org>

       •   LTTng documentation <http://lttng.org/docs>

       •   Git repositories <http://git.lttng.org>

       •   GitHub organization <http://github.com/lttng>

       •   Continuous integration <http://ci.lttng.org/>

       •   Mailing list <http://lists.lttng.org> for support and
           development: lttng-dev@lists.lttng.org

       •   IRC channel <irc://irc.oftc.net/lttng>: #lttng on
           irc.oftc.net

COPYRIGHTS         top

       This library is part of the LTTng-UST project.

       This library is distributed under the GNU Lesser General Public
       License, version 2.1 <http://www.gnu.org/licenses/old-
       licenses/lgpl-2.1.en.html>. See the COPYING
       <https://github.com/lttng/lttng-ust/blob/v2.10.6/COPYING> file
       for more details.

THANKS         top

       Thanks to Ericsson for funding this work, providing real-life use
       cases, and testing.

       Special thanks to Michel Dagenais and the DORSAL laboratory
       <http://www.dorsal.polymtl.ca/> at École Polytechnique de
       Montréal for the LTTng journey.

AUTHORS         top

       LTTng-UST was originally written by Mathieu Desnoyers, with
       additional contributions from various other people. It is
       currently maintained by Mathieu Desnoyers
       <mailto:mathieu.desnoyers@efficios.com>.

SEE ALSO         top

       tracef(3), tracelog(3), lttng-gen-tp(1), lttng-ust-dl(3),
       lttng-ust-cyg-profile(3), lttng(1), lttng-enable-event(1),
       lttng-list(1), lttng-add-context(1), babeltrace(1), dlopen(3),
       ld.so(8)

COLOPHON         top

       This page is part of the LTTng-UST (    LTTng Userspace Tracer)
       project.  Information about the project can be found at 
       ⟨http://lttng.org/⟩.  It is not known how to report bugs for this
       man page; if you know, please send a mail to man-pages@man7.org.
       This page was obtained from the tarball lttng-ust-2.11.0.tar.bz2
       fetched from ⟨https://lttng.org/files/lttng-ust/⟩ on 2019-11-19.
       If you discover any rendering problems in this HTML version of
       the page, or you believe there is a better or more up-to-date
       source for the page, or you have corrections or improvements to
       the information in this COLOPHON (which is not part of the
       original manual page), send a mail to man-pages@man7.org

LTTng 2.10.6                   10/17/2019                   LTTNG-UST(3)

Pages that refer to this page: lttng(1)lttng-crash(1)lttng-enable-channel(1)lttng-gen-tp(1)lttng-health-check(3)lttng-ust-cyg-profile(3)lttng-ust-dl(3)tracef(3)tracelog(3)babeltrace2-filter.lttng-utils.debug-info(7)lttng-relayd(8)lttng-sessiond(8)