
Linux Security and Isolation APIs

Control Groups (cgroups)

Michael Kerrisk, man7.org © 2020

mtk@man7.org

February 2020

Outline

13 Cgroups 13-1
13.1 Introduction to cgroups v1 and v2 13-3
13.2 Cgroups v1: hierarchies and controllers 13-17
13.3 Cgroups v1: populating a cgroup 13-24
13.4 Cgroups v1: release notification 13-33
13.5 Cgroups v1: a survey of the controllers 13-43
13.6 Cgroups /proc files 13-65
13.7 Cgroup namespaces 13-68



Outline

13 Cgroups 13-1
13.1 Introduction to cgroups v1 and v2 13-3
13.2 Cgroups v1: hierarchies and controllers 13-17
13.3 Cgroups v1: populating a cgroup 13-24
13.4 Cgroups v1: release notification 13-33
13.5 Cgroups v1: a survey of the controllers 13-43
13.6 Cgroups /proc files 13-65
13.7 Cgroup namespaces 13-68

Goals

Cgroups is a big topic
Many controllers
V1 versus V2 interfaces

Our goal: understand fundamental semantics of cgroup
filesystem and interfaces

Useful from a programming perspective
How do I build container frameworks?
What else can I build with cgroups?

And useful from a system engineering perspective
What’s going on underneath my container’s hood?

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-4 §13.1



Focus

We’ll focus on:
General principles of operation; goals of cgroups
The cgroup filesystem
Interacting with the cgroup filesystem using shell
commands
Problems with cgroups v1, motivations for cgroups v2
Differences between cgroups v1 and v2

We’ll look briefly at some of the controllers

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-5 §13.1

Resources

Kernel Documentation files
Documentation/cgroup-v1/*.txt
Documentation/admin-guide/cgroup-v2.rst

cgroups(7) man page
Neil Brown’s excellent (2014) LWN.net series on Cgroups:
https://lwn.net/Articles/604609/

Thought-provoking commentary on the meaning of
grouping and hierarchy

https://lwn.net/Articles/484254/ – Tejun Heo’s initial
thinking about redesigning cgroups
Other articles at https://lwn.net/Kernel/Index/#Control_groups

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-6 §13.1



History

2006/2007, “Process Containers”
Developed by engineers at Google
2007: renamed “control groups” to avoid confusion with
alternate meaning for “containers”

January 2008: initial release in mainline kernel (Linux
2.6.24)

Three resource controllers in initial mainline release
Fast-forward a few years...

Many new resource controllers added
Various problems arose from haphazard/uncoordinated
development of cgroup controllers

“Design followed implementation” :-(

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-7 §13.1

History

Sep 2012: work begins on cgroups v2
In-kernel changes, but marked experimental
Changes were necessarily incompatible with cgroups v1

⇒ Create new/orthogonal filesystem interface for v2
March 2016, Linux 4.5: cgroups version 2 becomes official

Older version (cgroups v1) remains
A.k.a. “legacy cgroups”, but not going away in a hurry

Oct 2019: Fedora 31 is first distro to switch to v2-by-default
Boot with systemd.unified_cgroup_hierarchy=0 to
revert to v1/v2 “hybrid” mode

Cgroups v2 work is ongoing
For now, some functionality remains available only via v1
Conversely, v2 offers a number of advantages over v1

Subject to some rules, can use both versions at same time

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-8 §13.1



Cgroups overview

Two principle components:
A mechanism for hierarchically grouping processes
A set of controllers (kernel components) that manage,
control, or monitor processes in cgroups

(Resources such as CPU, memory, block I/O bandwidth)

Interface is via a pseudo-filesystem
Cgroup manipulation takes form of filesystem operations,
which might be done:

Via shell commands
Programmatically
Via management daemon (e.g., systemd)
Via your container framework’s tools (e.g., LXC, Docker)

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-9 §13.1

What do cgroups allow us to do?

Limit resource usage of group
E.g., limit percentage of CPU available to group

Prioritize group for resource allocation
E.g., some group might get greater proportion of CPU

Resource accounting
Measure resources used by processes

Freeze a group
Freeze, restore, and checkpoint a group

And more...

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-10 §13.1



Terminology and semantics

Control group: group of processes bound to set of
parameters or limits
(Resource) controller: kernel component that controls or
monitors processes in a cgroup

E.g., memory controller limits memory usage; cpuacct
accounts for CPU usage
Also known as subsystem

(But that term is rather ambiguous)
Cgroups for each controller are arranged in a hierarchy

Child cgroups inherit attributes from parent

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-11 §13.1

Filesystem interface

Cgroup filesystem directory structure defines cgroups +
cgroup hierarchy

I.e., use mkdir(2) / rmdir(2) (or equivalent shell
commands) to create cgroups

Each subdirectory contains automagically created files
Some files are used to manage the cgroup itself
Other files are controller-specific

Files in cgroup are used to:
Define/display membership of cgroup
Control behavior of processes in cgroup
Expose information about processes in cgroup (e.g.,
resource usage stats)

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-12 §13.1



Example: the pids controller (cgroups v1)

pids (“process number”) controller allows us to limit
number of PIDs in cgroup

Prevent fork() bombs!
Use mount to attach pids controller to cgroup filesystem:
# mkdir -p /sys/fs/ cgroup /pids # Create mount point
# mount -t cgroup -o pids none /sys/fs/ cgroup /pids

� May not be necessary
Some systems automatically mount filesystems with
controllers attached

Specifically, systemd mounts the v1 controllers under
subdirectories of /sys/fs/cgroup, a tmpfs filesystem
mounted via:
# mount -t tmpfs tmpfs /sys/fs/ cgroup

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-13 §13.1

Example: the pids controller (cgroups v1)

Create new cgroup, and place shell’s PID in that cgroup:
# mkdir /sys/fs/ cgroup /pids/g1
# echo $$
17273
# echo $$ > /sys/fs/ cgroup /pids/g1/ cgroup .procs

cgroup.procs defines/displays PIDs in cgroup
Which processes are in cgroup?
# cat /sys/fs/ cgroup /pids/g1/ cgroup .procs
17273
20591

Where did PID 20591 come from?
PID 20591 is cat command, created as a child of shell

Child processes inherit parent’s cgroup membership(s)

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-14 §13.1



Example: the pids controller (cgroups v1)

Limit number of processes in cgroup, and show effect:
# echo 20 > /sys/fs/ cgroup /pids/g1/pids.max
# for a in $(seq 1 20); do sleep 20 & done
[1] 20938
...
[18] 20955
bash: fork: retry: Resource temporarily unavailable

pids.max defines/exposes limit on number of PIDs in
cgroup

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-15 §13.1

Applications

Cgroups (v1) is used in a range of applications
Container frameworks such as Docker and LXC
Firejail
Flatpak
systemd (also knows about cgroups v2)
and more...

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-16 §13.1



Outline

13 Cgroups 13-1
13.1 Introduction to cgroups v1 and v2 13-3
13.2 Cgroups v1: hierarchies and controllers 13-17
13.3 Cgroups v1: populating a cgroup 13-24
13.4 Cgroups v1: release notification 13-33
13.5 Cgroups v1: a survey of the controllers 13-43
13.6 Cgroups /proc files 13-65
13.7 Cgroup namespaces 13-68

Cgroup hierarchies

Cgroup == collection of processes
Cgroup hierarchy == hierarchical arrangement of cgroups

Implemented via a cgroup pseudo-filesystem
Structure and membership of cgroup hierarchy is defined by:

1 Mounting a cgroup filesystem
2 Creating a subdirectory structure that reflects desired

cgroup hierarchy
3 Moving processes within hierarchy by writing their PIDs

to special files in cgroup subdirectories
E.g., cgroup.procs

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-18 §13.2



Attaching a controller to a hierarchy

A controller is attached to a hierarchy by mounting a
cgroup filesystem:
# mkdir -p /sys/fs/ cgroup /pids # Create mount point
# mount -t cgroup -o pids none /sys/fs/ cgroup /pids

Here, pids controller was mounted
none can be replaced by any suitable mnemonic name

Not interpreted by system, but appears in /proc/mounts

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-19 §13.2

Attaching a controller to a hierarchy

To see which cgroup filesystems are mounted and their
attached controllers:
# mount | grep cgroup
none on /sys/fs/ cgroup /pids type cgroup (rw ,pids)
# grep cgroup /proc/ mounts
none /sys/fs/ cgroup /pids cgroup rw ,... , pids 0 0

Unmounting filesystem detaches the controller:
# umount /sys/fs/ cgroup /pids

But..., filesystem will remain (invisibly) mounted if it
contains child cgroups

I.e., must move all processes to root cgroup, and remove
child cgroups, to truly unmount

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-20 §13.2



Attaching controllers to hierarchies

A controller can be attached to only one hierarchy
Mounting same controller at different mount point simply
creates second view of same hierarchy

Multiple controllers can be attached to same hierarchy:
# mkdir -p /sys/fs/ cgroup / mem_cpu
# mount -t cgroup -o memory ,cpu none \

/sys/fs/ cgroup / mem_cpu

In effect, resources associated with those controllers are
being managed together

Or, all controllers can be attached to one hierarchy:
# mount -t cgroup -o all none /some/mount/point

-o all is the default if no controller is specified

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-21 §13.2

Creating cgroups

When a new hierarchy is created, all tasks on system are
part of root cgroup for that hierarchy
New cgroups are created by creating subdirectories under
cgroup mount point:
# mkdir /sys/fs/ cgroup / memory /g1

Relationships between cgroups are reflected by creating
nested (arbitrarily deep) subdirectory structure

Meaning of hierarchical relationship depends on controller

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-22 §13.2



Destroying cgroups

An empty cgroup can be destroyed by removing directory
Empty == last process in cgroup terminates or migrates to
another cgroup and last child cgroup is removed

Presence of zombie process does not prevent removal of
cgroup directory

(Notionally, zombies are moved to root cgroup)

Not necessary (or possible) to delete attribute files inside
cgroup directory before deleting it

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-23 §13.2



Outline

13 Cgroups 13-1
13.1 Introduction to cgroups v1 and v2 13-3
13.2 Cgroups v1: hierarchies and controllers 13-17
13.3 Cgroups v1: populating a cgroup 13-24
13.4 Cgroups v1: release notification 13-33
13.5 Cgroups v1: a survey of the controllers 13-43
13.6 Cgroups /proc files 13-65
13.7 Cgroup namespaces 13-68

Placing a process in a cgroup

To move a process to a cgroup, we write its PID to
cgroup.procs file in corresponding subdirectory
# echo $$ > /sys/fs/ cgroup / memory /g1/ cgroup .procs

In multithreaded process, moves all threads to cgroup...
� Can write only one PID at a time

write() fails with EINVAL

Writing 0 to cgroup.procs moves writing process to cgroup

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-26 §13.3



Viewing cgroup membership

To see PIDs in cgroup, read cgroup.procs file
PIDs are newline-separated
Zombie processes do not appear in list

� List is not guaranteed to be sorted or free of
duplicates

PID might be moved out and back into cgroup or recycled
while reading list

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-27 §13.3

Cgroup membership details

Within a hierarchy, a process can be member of just one
cgroup

That association defines attributes / parameters that apply
to the process

Adding a process to a different cgroup automatically
removes it from previous cgroup
A process can be a member of multiple cgroups, each of
which is in a different hierarchy
On fork(), child inherits cgroup memberships of parent

Afterward, cgroup memberships of parent and child can be
independently changed

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-28 §13.3



Placing a thread (task) in a cgroup

Writing a PID to cgroup.procs moves all threads in
thread group to a cgroup
Cgroups v1 also supports notion of thread-level
granularity for cgroup membership

I.e., individual threads in a multithreaded process can be
placed in different cgroups
⇒ threads can be subject to different control settings

Each cgroup directory also has a tasks file...
Writing a thread ID (TID) to tasks moves that thread to
cgroup

Thread ID == kernel thread ID (displayable with ps –L)
Reading tasks shows all TIDs in cgroup

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-29 §13.3

Tasks?

Cgroups v1 draws distinction between process and task
Task == kernel scheduling entity

From scheduler’s perspective, “processes” and “threads” are
pretty much the same thing....
(Threads just share more state than processes)

Multithreaded process == set of tasks with same thread
group ID (TGID)

TGID == PID!
Each thread has unique thread ID (TID)

Here, TID means kernel thread ID
I.e., value returned by clone(2) and gettid(2)

And displayed (as “LWP”) by ps –L
Not same as POSIX threads pthread_t

(But there is 1:1 relationship in NPTL implementation...)

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-30 §13.3



Exercises

(If you have a recent distro that defaults to cgroups v2 only, reboot with
systemd.unified_cgroup_hierarchy=0 to revert to “hybrid” mode.)

1 In this exercise, we create a cgroup, place a process in the cgroup, and
then migrate that process to a different cgroup.

If the memory cgroup is not already mounted, mount it:
# grep ’cgroup .* mem ’ /proc/ mounts # Is cgroup mounted ?
# mkdir -p /sys/fs/ cgroup / memory
# mount -t cgroup -o memory none /sys/fs/ cgroup / memory
# cd /sys/fs/ cgroup / memory

Note: some systems (e.g., some Debian releases) provide a
patched kernel that disables the memory controller by
default. If you can’t mount the controller, it may be
necessary to reboot with the cgroup_enable=memory
kernel command-line option. Alternatively, you could use a
different controller for this exercise.

[Exercise continues on the next slide]

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-31 §13.3

Exercises

Create two subdirectories, m1 and m2, in the memory cgroup root
directory.
Execute the following command, and note the PID assigned to
the resulting process:
# sleep 300 &

Write the PID of the process created in the previous step into the
file m1/cgroup.procs, and verify by reading the file contents.
Now write the PID of the process into the file m2/cgroup.procs.
Is the PID still visible in the file m1/cgroup.procs? Explain.
Try removing cgroup m1 using the command rm -rf m1. Why
doesn’t this work?
Remove the cgroups m1 and m2 using the rmdir command.

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-32 §13.3


