Linux Security and Isolation APlIs

Control Groups (cgroups)

Michael Kerrisk, man7.org © 2020

mtk@man7.org

February 2020

Outline
13 Cgroups 13-1
13.1 Introduction to cgroups vl and v2 13-3
13.2 Cgroups v1: hierarchies and controllers 13-17
13.3 Cgroups v1: populating a cgroup 13-24
13.4 Cgroups v1: release notification 13-33
13.5 Cgroups v1: a survey of the controllers 13-43
13.6 Cgroups /proc files 13-65
13.7 Cgroup namespaces 13-68

Outline

13 Cgroups 13-1
13.1 Introduction to cgroups vl and v2 13-3

Goals

@ Cgroups is a big topic
e Many controllers
e V1 versus V2 interfaces
@ Our goal: understand fundamental semantics of cgroup

filesystem and interfaces
o Useful from a programming perspective
@ How do I build container frameworks?

@ What else can | build with cgroups?

o And useful from a system engineering perspective
e What's going on underneath my container's hood?

13-4 §13.1

©2020, Michael Kerrisk Cgroups

Linux Security and Isolation APIs

Focus

o We'll focus on:

e General principles of operation; goals of cgroups
e The cgroup filesystem

o Interacting with the cgroup filesystem using shell
commands

e Problems with cgroups v1, motivations for cgroups v2
o Differences between cgroups vl and v2

o We'll look briefly at some of the controllers

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-5 §13.1

Resources

@ Kernel Documentation files

e Documentation/cgroup-v1/*.txt
e Documentation/admin-guide/cgroup-v2.rst
@ cgroups(7) man page

@ Neil Brown's excellent (2014) LWN.net series on Cgroups:
https://lwn.net/Articles /604609 /
e Thought-provoking commentary on the meaning of
grouping and hierarchy

o https://lwn.net/Articles/484254/ — Tejun Heo's initial
thinking about redesigning cgroups
@ Other articles at https://Iwn.net/Kernel/Index/# Control_groups

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-6 §13.1

History

@ 2006/2007, “Process Containers”

e Developed by engineers at Google

e 2007: renamed “control groups” to avoid confusion with
alternate meaning for “containers”

@ January 2008: initial release in mainline kernel (Linux
2.6.24)

e Three resource controllers in initial mainline release

@ Fast-forward a few years...
e Many new resource controllers added
@ Various problems arose from haphazard/uncoordinated
development of cgroup controllers
o “Design followed implementation” :-(

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-7 §13.1

History

@ Sep 2012: work begins on cgroups v2
o In-kernel changes, but marked experimental
e Changes were necessarily incompatible with cgroups vl

o = Create new/orthogonal filesystem interface for v2

@ March 2016, Linux 4.5: cgroups version 2 becomes official

o Older version (cgroups v1) remains
o A.k.a. “legacy cgroups”, but not going away in a hurry

@ Oct 2019: Fedora 31 is first distro to switch to v2-by-default

o Boot with systemd.unified_cgroup_hierarchy=0 to
revert to v1/v2 “hybrid” mode

@ Cgroups v2 work is ongoing

e For now, some functionality remains available only via v1

o Conversely, v2 offers a number of advantages over vl
@ Subject to some rules, can use both versions at same time

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-8 §13.1

Cgroups overview

@ Two principle components:
e A mechanism for hierarchically grouping processes

o A set of controllers (kernel components) that manage,
control, or monitor processes in cgroups

@ (Resources such as CPU, memory, block I/O bandwidth)

@ Interface is via a pseudo-filesystem

@ Cgroup manipulation takes form of filesystem operations,
which might be done:

e Via shell commands
e Programmatically
o Via management daemon (e.g., systemd)

o Via your container framework'’s tools (e.g., LXC, Docker)

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-9 §131

What do cgroups allow us to do?

@ Limit resource usage of group
e E.g., limit percentage of CPU available to group

@ Prioritize group for resource allocation
o E.g., some group might get greater proportion of CPU

@ Resource accounting
e Measure resources used by processes

@ Freeze a group
o Freeze, restore, and checkpoint a group

@ And more...

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-10 §13.1

Terminology and semantics

@ Control group: group of processes bound to set of
parameters or limits

o (Resource) controller: kernel component that controls or
monitors processes in a cgroup

o E.g., memory controller limits memory usage; cpuacct
accounts for CPU usage

e Also known as subsystem
o (But that term is rather ambiguous)
@ Cgroups for each controller are arranged in a hierarchy
o Child cgroups inherit attributes from parent

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-11 §13.1

Filesystem interface

@ Cgroup filesystem directory structure defines cgroups +
cgroup hierarchy

o l.e., use mkdir(2) / rmdir(2) (or equivalent shell
commands) to create cgroups

@ Each subdirectory contains automagically created files
e Some files are used to manage the cgroup itself

e Otbher files are controller-specific

@ Files in cgroup are used to:
o Define/display membership of cgroup

e Control behavior of processes in cgroup

o Expose information about processes in cgroup (e.g.,
resource usage stats)

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-12 §13.1

Example: the pids controller (cgroups v1)

@ pids (“process number”) controller allows us to limit
number of PIDs in cgroup

o Prevent fork() bombs!

@ Use mount to attach pids controller to cgroup filesystem:

mkdir -p /sys/fs/cgroup/pids # Create mount point
mount -t cgroup -o pids none /sys/fs/cgroup/pids

o /\ May not be necessary

e Some systems automatically mount filesystems with
controllers attached

e Specifically, systemd mounts the vl controllers under
subdirectories of /sys/fs/cgroup, a tmpfs filesystem
mounted via:

mount -t tmpfs tmpfs /sys/fs/cgroup

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-13 §13.1

Example: the pids controller (cgroups v1)

@ Create new cgroup, and place shell's PID in that cgroup:

mkdir /sys/fs/cgroup/pids/gl
echo $$
17273

echo $$ > /sys/fs/cgroup/pids/gl/cgroup.procs

o cgroup.procs defines/displays PIDs in cgroup

@ Which processes are in cgroup?

cat /sys/fs/cgroup/pids/gl/cgroup.procs
17273
20591

o Where did PID 20591 come from?

o PID 20591 is cat command, created as a child of shell
o Child processes inherit parent’'s cgroup membership(s)

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-14 §13.1

Example: the pids controller (cgroups v1)

@ Limit number of processes in cgroup, and show effect:

echo 20 > /sys/fs/cgroup/pids/gl/pids.max
for a in $(seq 1 20); do sleep 20 & done
[1] 20938

[18] 20955
bash: fork: retry: Resource temporarily unavailable

o pids.max defines/exposes limit on number of PIDs in
cgroup

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-15 §13.1

Applications

Cgroups (v1) is used in a range of applications
@ Container frameworks such as Docker and LXC

@ Firejail
o Flatpak
@ systemd (also knows about cgroups v2)

@ and more...

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-16 §13.1

Outline

13 Cgroups 13-1

13.2 Cgroups v1: hierarchies and controllers 13-17

Cgroup hierarchies

@ Cgroup == collection of processes

@ Cgroup hierarchy == hierarchical arrangement of cgroups
o Implemented via a cgroup pseudo-filesystem

@ Structure and membership of cgroup hierarchy is defined by:
©Q Mounting a cgroup filesystem

@ Creating a subdirectory structure that reflects desired
cgroup hierarchy

©@ Moving processes within hierarchy by writing their PIDs
to special files in cgroup subdirectories

e E.g., cgroup.procs

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-18 §13.2

Attaching a controller to a hierarchy

@ A controller is attached to a hierarchy by mounting a
cgroup filesystem:

mkdir -p /sys/fs/cgroup/pids # Create mount point
mount -t cgroup -o pids none /sys/fs/cgroup/pids

e Here, pids controller was mounted

e none can be replaced by any suitable mnemonic name
o Not interpreted by system, but appears in /proc/mounts

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-19 §13.2

Attaching a controller to a hierarchy

@ To see which cgroup filesystems are mounted and their
attached controllers:

mount | grep cgroup

none on /sys/fs/cgroup/pids type cgroup (rw,pids)
grep cgroup /proc/mounts

none /sys/fs/cgroup/pids cgroup rw,...,pids 0 O

@ Unmounting filesystem detaches the controller:

umount /sys/fs/cgroup/pids

o But..., filesystem will remain (invisibly) mounted if it
contains child cgroups

@ |l.e., must move all processes to root cgroup, and remove
child cgroups, to truly unmount

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-20 §13.2

Attaching controllers to hierarchies

@ A controller can be attached to only one hierarchy

e Mounting same controller at different mount point simply
creates second view of same hierarchy

@ Multiple controllers can be attached to same hierarchy:

mkdir -p /sys/fs/cgroup/mem_cpu
mount -t cgroup -o memory,cpu none \
/sys/fs/cgroup/mem_cpu

o In effect, resources associated with those controllers are
being managed together

@ Or, all controllers can be attached to one hierarchy:

mount -t cgroup -o all none /some/mount/point

e —o all is the default if no controller is specified

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-21 §13.2

Creating cgroups

@ When a new hierarchy is created, all tasks on system are
part of root cgroup for that hierarchy

@ New cgroups are created by creating subdirectories under
cgroup mount point:

mkdir /sys/fs/cgroup/memory/gl

@ Relationships between cgroups are reflected by creating
nested (arbitrarily deep) subdirectory structure

e Meaning of hierarchical relationship depends on controller

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-22 §13.2

Destroying cgroups

An empty cgroup can be destroyed by removing directory
@ Empty == last process in cgroup terminates or migrates to
another cgroup and last child cgroup is removed

e Presence of zombie process does not prevent removal of
cgroup directory

o (Notionally, zombies are moved to root cgroup)

@ Not necessary (or possible) to delete attribute files inside
cgroup directory before deleting it

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-23 §13.2

Outline

13 Cgroups 13-1

13.3 Cgroups v1: populating a cgroup 13-24

Placing a process in a cgroup

@ To move a process to a cgroup, we write its PID to
cgroup.procs file in corresponding subdirectory

echo $$ > /sys/fs/cgroup/memory/gl/cgroup.procs

e In multithreaded process, moves all threads to cgroup...

e /\ Can write only one PID at a time
o write() fails with EINVAL

@ Writing 0 to cgroup.procs moves writing process to cgroup

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-26 §13.3

Viewing cgroup membership

@ To see PIDs in cgroup, read cgroup.procs file
e PIDs are newline-separated

e Zombie processes do not appear in list

e /\ List is not guaranteed to be sorted or free of
duplicates
o PID might be moved out and back into cgroup or recycled
while reading list

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-27 §13.3

Cgroup membership details

@ Within a hierarchy, a process can be member of just one
cgroup
o That association defines attributes / parameters that apply
to the process

@ Adding a process to a different cgroup automatically
removes it from previous cgroup

@ A process can be a member of multiple cgroups, each of
which is in a different hierarchy

e On fork(), child inherits cgroup memberships of parent

o Afterward, cgroup memberships of parent and child can be
independently changed

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-28 §13.3

Placing a thread (task) in a cgroup

@ Writing a PID to cgroup.procs moves all threads in
thread group to a cgroup

@ Cgroups vl also supports notion of thread-level
granularity for cgroup membership
e l.e., individual threads in a multithreaded process can be
placed in different cgroups
o = threads can be subject to different control settings

@ Each cgroup directory also has a tasks file...
o Writing a thread ID (TID) to tasks moves that thread to
cgroup
e Thread ID == kernel thread ID (displayable with ps —L)

e Reading tasks shows all TIDs in cgroup

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-29 §13.3

Tasks?

@ Cgroups vl draws distinction between process and task

@ Task == kernel scheduling entity

o From scheduler’s perspective, “processes” and “threads” are
pretty much the same thing....

o (Threads just share more state than processes)

@ Multithreaded process == set of tasks with same thread
group ID (TGID)

o TGID == PID!
o Each thread has unique thread ID (TID)

@ Here, TID means kernel thread ID
o l.e., value returned by clone(2) and gettid(2)
e And displayed (as “LWP") by ps —L
o Not same as POSIX threads pthread_t
o (But there is 1:1 relationship in NPTL implementation...)

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-30 §13.3

Exercises

(If you have a recent distro that defaults to cgroups v2 only, reboot with
systemd.unified_cgroup_hierarchy=0 to revert to “hybrid” mode.)

© In this exercise, we create a cgroup, place a process in the cgroup, and
then migrate that process to a different cgroup.

(*]

If the memory cgroup is not already mounted, mount it:

grep ’cgroup.*mem’ /proc/mounts # Is cgroup mounted?
mkdir -p /sys/fs/cgroup/memory

mount -t cgroup -o memory none /sys/fs/cgroup/memory
cd /sys/fs/cgroup/memory

H HHH

o Note: some systems (e.g., some Debian releases) provide a
patched kernel that disables the memory controller by
default. If you can’t mount the controller, it may be
necessary to reboot with the cgroup_enable=memory
kernel command-line option. Alternatively, you could use a
different controller for this exercise.

[Exercise continues on the next slide]

Linux Security and Isolation APls ©2020, Michael Kerrisk Cgroups 13-31 §13.3

Exercises

Create two subdirectories, m1 and m2, in the memory cgroup root
directory.

Execute the following command, and note the PID assigned to
the resulting process:

sleep 300 &

Write the PID of the process created in the previous step into the
file m1/cgroup.procs, and verify by reading the file contents.

Now write the PID of the process into the file m2/cgroup.procs.
Is the PID still visible in the file m1/cgroup.procs? Explain.

Try removing cgroup m1 using the command rm -rf mi. Why
doesn’t this work?

Remove the cgroups m1 and m2 using the rmdir command.

Linux Security and Isolation APIs ©2020, Michael Kerrisk Cgroups 13-32 §13.3

