
Outline

3 File I/O and Files 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-7
3.3 The file offset and lseek() 3-21
3.4 Relationship between file descriptors and open files 3-30
3.5 Duplicating file descriptors 3-40
3.6 File status flags (and fcntl()) 3-46
3.7 Retrieving file information: stat() 3-54

Relationship between file descriptors and open files

Multiple file descriptors can refer to same open file
3 kernel data structures describe relationship:

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-32 §3.4

File descriptor table

Per-process table with one entry for each FD opened by process:
Flags controlling operation of FD (close-on-exec flag)
Reference to open file description
struct fdtable in include/linux/fdtable.h

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-33 §3.4

Open file table (table of open file descriptions)

System-wide table, one entry for each open file on system:
File offset
File access mode (R / W / R-W, from open())
File status flags (from open())
Signal-driven I/O settings
Reference to inode object for file
struct file in include/linux/fs.h

Following terms are commonly treated as synonyms:
open file description (OFD) (POSIX)
open file table entry or open file handle

(These two are ambiguous; POSIX terminology is
preferable)

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-34 §3.4

(In-memory) inode table

System-wide table drawn from file inode information in filesystem:
File type (regular file, FIFO, socket, . . .)
File permissions
Other file properties (size, timestamps, . . .)
struct inode in include/linux/fs.h

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-35 §3.4

Duplicated file descriptors (intraprocess)

A process may have multiple FDs referring to same OFD
Achieved using dup() or dup2()

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-36 §3.4

Duplicated file descriptors (between processes)

Two processes may have FDs referring to same OFD
Can occur as a result of fork()

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-37 §3.4

Distinct open file table entries referring to same file

Two processes may have FDs referring to distinct OFDs that refer
to same inode

Two processes independently open()ed same file

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-38 §3.4

Why does this matter?

Two different FDs referring to same OFD share file offset
(File offset == location for next read()/write())
Changes (read(), write(), lseek()) via one FD visible via
other FD
Applies to both intraprocess & interprocess sharing of OFD

Similar scope rules for status flags (O_APPEND, O_SYNC, . . .)
Changes via one FD are visible via other FD

(fcntl(F_SETFL) and fcntl(F_GETFL))

Conversely, changes to FD flags (held in FD table) are
private to each process and FD
kcmp(2) KCMP_FILE operation can be used to test if two
FDs refer to same OFD

Linux-specific

[TLPI §5.4]
System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-39 §3.4

Outline

3 File I/O and Files 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-7
3.3 The file offset and lseek() 3-21
3.4 Relationship between file descriptors and open files 3-30
3.5 Duplicating file descriptors 3-40
3.6 File status flags (and fcntl()) 3-46
3.7 Retrieving file information: stat() 3-54

A problem

./ myprog > output.log 2>&1

What does the shell syntax, 2>&1, do?
How does the shell do it?
Open file twice, once on FD 1, and once on FD 2?

FDs would have separate OFDs with distinct file offsets ⇒
standard output and error would overwrite
File may not even be open()-able:

e.g., ./myprog 2>&1 | less

Need a way to create duplicate FD that refers to same OFD

[TLPI §5.5]
System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-42 §3.5

Duplicating file descriptors

include <unistd .h>
int dup(int oldfd);

Arguments:
oldfd : an existing file descriptor

Returns new file descriptor (on success)
New file descriptor is guaranteed to be lowest
available

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-43 §3.5

Duplicating file descriptors

FDs 0, 1, and 2 are normally always open, so shell can
achieve 2>&1 redirection by:
close(STDERR_FILENO); /* Frees FD 2 */
newfd = dup(STDOUT_FILENO); /* Reuses FD 2 */

But what if FD 0 was closed?

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-44 §3.5

Duplicating file descriptors

include <unistd .h>
int dup2(int oldfd , int newfd);

Like dup(), but uses newfd for the duplicate FD
Silently closes newfd if it was open
Closing + reusing newfd is done atomically

Important: otherwise newfd might be re-used in between
Does nothing if newfd == oldfd
Returns new file descriptor (i.e., newfd) on success

dup2(STDOUT_FILENO, STDERR_FILENO);
See dup2(2) man page for more details

[TLPI §5.5]
System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-45 §3.5

Outline

3 File I/O and Files 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-7
3.3 The file offset and lseek() 3-21
3.4 Relationship between file descriptors and open files 3-30
3.5 Duplicating file descriptors 3-40
3.6 File status flags (and fcntl()) 3-46
3.7 Retrieving file information: stat() 3-54

File status flags

Control semantics of I/O on a file
(O_APPEND, O_NONBLOCK, O_SYNC, . . .)

Associated with open file description
Set when file is opened
Can be retrieved and modified using fcntl()

[TLPI §5.3]
System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-48 §3.6

fcntl() : file control operations

include <fcntl.h>
int fcntl(int fd , int cmd /* , arg */);

Performs control operations on an open file
Arguments:

fd : file descriptor
cmd : the desired operation
arg : optional, type depends on cmd

Return on success depends on cmd ; -1 returned on error
Many types of operation

file locking, signal-driven I/O, file descriptor flags . . .

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-49 §3.6

Retrieving file status flags and access mode

Retrieving flags (both access mode and status flags)
flags = fcntl(fd , F_GETFL);

Check access mode
amode = flags & O_ACCMODE ;
if (amode == O_RDONLY || amode == O_RDWR)

printf ("File is readable \n");

� ’read’ and ’write’ are not separate bits!
if (flags & O_RDONLY) /* Wrong !! */

printf ("File is readable \n");

Access mode is a 2-bit field that is an enumeration:
00 == O_RDONLY
01 == O_WRONLY
10 == O_RDWR

Access mode can’t be changed after file is opened
System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-50 §3.6

Retrieving and modifying file status flags

Retrieving file status flags
flags = fcntl(fd , F_GETFL);
if (flags & O_NONBLOCK)

printf (" Nonblocking I/O is in effect \n");

Setting a file status flag
flags = fcntl(fd , F_GETFL); /* Retrieve flags */
flags |= O_APPEND ; /* Set " append " bit */
fcntl(fd , F_SETFL , flags); /* Modify flags */

� Not thread-safe...
(But in many cases, flags can be set when FD is created, e.g.,
by open())

Clearing a file status flag
flags = fcntl(fd , F_GETFL); /* Retrieve flags */
flags &= ~ O_APPEND ; /* Clear " append " bit */
fcntl(fd , F_SETFL , flags); /* Modify flags */

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-51 §3.6

Exercise

1 Show that duplicate file descriptors share file offset and file status flags
by writing a program ([template: fileio/ex.fd_sharing.c]) that:

Opens an existing file (supplied as argv[1]) and duplicates (dup())
the resulting file descriptor, to create a second file descriptor.
Displays the file offset and the state of the O_APPEND file status
flag via the first file descriptor.

Initially the file offset will be zero, and the O_APPEND flag
will not be set

Changes the file offset (lseek()) and enables (turns on) the
O_APPEND file status flag (fcntl()) via the second file descriptor.
Displays the file offset and the state of the O_APPEND file status
flag via the first file descriptor.

Hints:
Remember to update the Makefile!
while inotifywait -q . ; do echo; echo; make; done

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-52 §3.6

Exercise

2 Read about the KCMP_FILE operation in the kcmp(2) man page.
Extend the program created in the preceding exercise to use this
operation to verify that the two file descriptors refer to the same open
file description (i.e., use kcmp(getpid(), getpid(), KCMP_FILE, fd1,
fd2)). Note: because there is currently no kcmp() wrapper function in
glibc, you will have to write one yourself using syscall(2):
define _GNU_SOURCE
include <unistd .h>
include <sys/ syscall .h>
include <linux/kcmp.h>

static int kcmp(pid_t pid1 , pid_t pid2 , int type ,
unsigned long idx1 , unsigned long idx2)

{
return syscall (SYS_kcmp , pid1 , pid2 , type ,

idx1 , idx2);
}

System Programming for Linux Containers ©2020, Michael Kerrisk File I/O and Files 3-53 §3.6

