System Programming for Linux Containers

Seccomp
Michael Kerrisk, man7.org © 2023
February 2023
mtk@man7.org
Outline

20 Seccomp 20-1
20.1 Introduction 20-3
20.2 History 20-5
20.3 Seccomp filtering and BPF 20-11
20.4 The BPF virtual machine and BPF instructions 20-18
20.5 BPF filter return values 20-30
20.6 BPF programs 20-38
20.7 Checking the architecture 20-53
20.8 Productivity aids (/ibseccomp and other tools) 20-62
20.9 Applications and further information 20-73

Outline

20 Seccomp 20-1
20.1 Introduction 20-3

What is seccomp?

@ Kernel provides large number of system calls
e ~400 system calls

@ Each system call is a vector for attack against kernel

@ Most programs use only small subset of available system
calls

e Remaining systems calls should never legitimately occur

o If they do occur, perhaps it is because program has been
compromised

@ Seccomp (‘“secure computing”) = mechanism to restrict
system calls that a process may make

o Reduces attack surface of kernel

o A key component for building application sandboxes

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-4 §20.1

Outline

20 Seccomp 20-1
20.2 History 20-5
History

@ First version in Linux 2.6.12 (2005)
o Filtering enabled via /proc/PID/seccomp

e Writing "“1" to file places process (irreversibly) in “strict”
seccomp mode

o Need CONFIG_SECCOMP

@ Strict mode: only permitted system calls are read(),
write(), _exit(), and sigreturn()

o Note: open() not included (must open files before entering
strict mode)

o sigreturn() allows for signal handlers
@ Other system calls = thread is killed with SIGKILL

@ Designed to sandbox compute-bound programs that deal
with untrusted byte code

e Code perhaps exchanged via pre-created pipe or socket

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-6 §20.2

History

Linux 2.6.23 (2007):
@ /proc/PID/seccomp interface replaced by prctl() operations

@ prctl(PR_SET_SECCOMP, arg) modifies caller's seccomp
mode

e SECCOMP_MODE_STRICT: limit syscalls as before
@ prctl(PR_GET_SECCOMP) returns seccomp mode:
e 0 = process is not in seccomp mode
o Otherwise?
o SIGKILL (!)
e prctl() is not a permitted system call in “strict” mode

@ Who says kernel developers don't have a sense of humor?

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-7 §20.2

History

@ Linux 3.5 (July 2012) adds “filter” mode (AKA “seccomp2”)
o prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, ...)

e Can control which system calls are permitted to
calling thread

e Control based on system call number and argument values
e Choice is controlled by user-defined filter—a BPF “program”
o Berkeley Packet Filter (later)
o Requires CONFIG_SECCOMP_FILTER

e By now used in a range of tools

e E.g., Chrome, Firefox, OpenSSH, vsftpd, systemd, Docker,
LXC, Flatpak, Firejail, strace

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-8 §20.2

History

e Linux 3.8 (2013):
o The joke is getting old...

e New /proc/PID/status Seccomp field exposes process
seccomp mode (as a number)

0 // SECCOMP_MODE_DISABLED
1 // SECCOMP_MODE_STRICT
2 // SECCOMP_MODE_FILTER

@ Process can, without fear, read from this file to discover its
own seccomp mode

e But, must have previously obtained a file descriptor...

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-9 §20.2

History

o Linux 3.17 (2014):
o seccomp() system call added
o (Rather than further multiplexing of prctl())

o seccomp(2) provides superset of prctl(2) functionality
@ Can synchronize all threads to same filter tree

o Useful, e.g., if some threads created by start-up code before
application has a chance to install filter(s)

o Linux 4.14 (2017):

o Audit logging of seccomp actions

o Interfaces to discover what seccomp features are supported
by kernel

e Wider range of “actions” can be returned by BPF filters

@ Linux 5.0 (March 2019):

e New action: notification to user-space process

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-10 §20.2

Outline

20 Seccomp 20-1

20.3 Seccomp filtering and BPF 20-11

Seccomp filtering

@ Allows filtering based on system call number and argument

(register) values
e Pointers can not be dereferenced
@ Because of time-of-check, time-of-use race conditions
Seccomp and deep argument inspection
https://lwn.net/Articles/822256/, June 2020

o Landlock LSM, added in Linux 5.13 (2021), addresses this
restriction(?)

Seccomp 20-12 §20.3

System Programming for Linux Containers ©2023, Michael Kerrisk

Seccomp filtering overview

@ Steps:

@ Construct filter program that specifies permitted system
calls

@ Process installs filter for itself using seccomp() or prctl()

© Process executes code that should be filtered:
@ exec() new program, or

@ invoke function in dynamically loaded library (plug-in)

@ Once installed, every syscall made by process triggers
execution of filter

@ Installed filters can’t be removed

o Filter == declaration that we don't trust subsequently
executed code

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-13 §20.3

BPF byte code

@ Seccomp filters are expressed as BPF (Berkeley Packet
Filter) programs

o BPF is a byte code which is interpreted by a virtual
machine (VM) implemented inside kernel

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-14 §20.3

BPF origins

e BPF originally devised (in 1992) for tcpdump

e Monitoring tool to display packets passing over network
e http://www.tcpdump.org/papers/bpf-usenix93.pdf

@ Volume of network traffic is enormous = must filter for
packets of interest

o BPF allows in-kernel selection of packets

o Filtering based on fields in packet header

@ Filtering in kernel more efficient than filtering in user space
e Unwanted packets are discarded early

o Avoid expense of passing every packet over
kernel-user-space boundary

@ © Seccomp = generalize BPF model to filter on syscall info

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-15 §20.3

Generalizing BPF

@ BPF originally designed to work with network packet headers

@ Seccomp?2 developers realized BPF could be generalized to
solve different problem: filtering of system calls

e Same basic task: test-and-branch processing based on
content of a small set of memory locations

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-16 §20.3

BPF virtual machine

o BPF defines a virtual machine (VM) that can be
implemented inside kernel

@ VM characteristics:
e Simple instruction set
@ Small set of instructions

o All instructions are same size (64 bits)
@ Implementation is simple and fast

e Only branch-forward instructions
e Programs are directed acyclic graphs (DAGs)

o Kernel can verify validity /safety of programs
e Program completion is guaranteed (DAGs)

@ Simple instruction set = can verify opcodes and arguments
@ Can detect dead code
e Can verify that program completes via a “return” instruction

o BPF filter programs are limited to 4096 instructions

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-17 §20.3

Outline

20 Seccomp 20-1

20.4 The BPF virtual machine and BPF instructions 20-18

Key features of BPF virtual machine

@ Accumulator register (32-bit)
o Data area (data to be operated on)
e In seccomp context: data area describes system call

@ All instructions are 64 bits, with a fixed format
e Expressed as a C structure:

struct sock_filter {

__ul6 code; /* Filter code (opcode)x*/

__u8 jt; /* Jump true */

__u8 jf; /* Jump false */

__u32 k; /* Multiuse field (operand) */

};

@ See <linux/filter.h> and <linux/bpf_common.h>

@ No state is preserved between BPF program invocations
e E.g., can't intercept n'th syscall of a particular type

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-20 §20.4

BPF instruction set

Instruction set includes:
@ Load instructions (BPF_LD)

@ Store instructions (BPF_ST)

e There is a “working memory” area where info can be stored
(not persistent)

@ Jump instructions (BPF_JMP)

@ Arithmetic/logic instructions (BPF_ALU)
o BPF_ADD, BPF_SUB, BPF_MUL, BPF_DIV, BPF_MOD, BPF_NEG

o BPF_OR, BPF_AND, BPF_XOR, BPF_LSH, BPF_RSH

@ Return instructions (BPF_RET)
e Terminate filter processing

e Report a status telling kernel what to do with syscall

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-21 §20.4

BPF jump instructions

@ Conditional and unconditional jump instructions provided

@ Conditional jump instructions consist of
e Opcode specifying condition to be tested

e Value to test against

e Two jump targets
@ jt: target if condition is true

e jf: target if condition is false
@ Conditional jump instructions:
e BPF_JEQ: jump if equal
e BPF_JGT: jump if greater
e BPF_JGE: jump if greater or equal
e BPF_JSET: bit-wise AND + jump if nonzero result
e jftarget = no need for BPF_{JNE,JLT,JLE,JCLEAR}

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-22 §20.4

BPF jump instructions

@ Targets are expressed as relative offsets in instruction list
o 0 == no jump (execute next instruction)

e jt and jf are 8 bits = 255 maximum offset for conditional
jumps

@ Unconditional BPF_JA (“jump always™) uses k as offset,
allowing much larger jumps

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-23 §20.4

Seccomp BPF data area

@ Seccomp provides data describing syscall to filter program
o Buffer is read-only
e l.e., seccomp filter can’'t change syscall or syscall arguments

@ Can be expressed as a C structure...

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-24 §20.4

Seccomp BPF data area

struct seccomp_data {

int nr; /* System call number */
__u32 arch; /* AUDIT_ARCH_* value */
__ub4 instruction_pointer; /* CPU IP %/

__u6b4 argsl[6]; /* System call arguments */

nr: system call number (architecture-dependent); 4-byte int

arch: identifies architecture
o Constants defined in <linux/audit.h>
o AUDIT ARCH X86 64, AUDIT ARCH_ARM, etc.

instruction_pointer: CPU instruction pointer

args: system call arguments

e System calls have maximum of six arguments

e Number of elements used depends on system call

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-25 §20.4

Buildi

ng BPF instructions

(*)]

(*]

One could code BPF instructions numerically by hand...

But, header files define symbolic constants and convenience
macros (BPF_STMT (), BPF_JUMP()) to ease the task

#define BPF_STMT(code, k) \

{ (unsigned short)(code), 0, 0, k }
#define BPF_JUMP(code, k, jt, jf) \

{ (unsigned short) (code), jt, jf, k }

e These macros just plug values together to form sock_ filter
structure initializer

struct sock_filter {

__ul6 code; /* Filter code (opcode)*/

__u8 jt; /* Jump true */

__u8 jf; /* Jump false */

__u32 k; /* Multiuse field (operand) */

};

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-26 §20.4

Building BPF instructions: examples

@ Load architecture number into accumulator

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
(offsetof (struct seccomp_data, arch)))

@ Opcode here is constructed by ORing three values together:
e BPF_LD: load

o BPF_W: operand size is a word (4 bytes)

e BPF_ABS: address mode specifying that source of load is
data area (containing system call data)

o See <linux/bpf_common.h> for definitions of opcode
constants

@ Operand is architecture field of data area
o offsetof () yields byte offset of a field in a structure

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-27 §20.4

Building BPF instructions: examples

@ Test value in accumulator

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, AUDIT_ARCH_X86_64, 1, 0)

e BPF_JMP | BPF_JEQ: jump with test on equality
o BPF_K: value to test against is in generic multiuse field (k)
e k contains value AUDIT ARCH _X86 64

e jt value is 1, meaning skip one instruction if test is true

e jfvalue is 0, meaning skip zero instructions if test is false
@ l.e., continue execution at following instruction

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-28 §20.4

Building BPF instructions: examples

@ Return a value that causes kernel to kill process

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET KILL PROCESS)

o Arithmetic/logic instruction: add one to accumulator

BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1)

o Arithmetic/logic instruction: right shift accumulator 12 bits

BPF_STMT(BPF_ALU | BPF_RSH | BPF_K, 12)

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-29 §20.4

Outline
20 Seccomp 20-1

20.5 BPF filter return values 20-30

Filter return value

@ Once filter is installed, every syscall is tested against filter
@ Seccomp filter must return a value to kernel indicating
whether syscall is permitted
e Otherwise EINVAL when attempting to install filter
@ Return value is 32 bits, in two parts:

e Most significant 16 bits specify an action to kernel
e SECCOMP_RET_ACTION_FULL mask

o Least significant 16 bits specify “data” for return value
@ SECCOMP_RET DATA mask

#define SECCOMP_RET_ACTION_FULL Oxffff0000U
#define SECCOMP_RET_DATA 0x0000f£££fU

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-32 §20.5

Filter return action (1)

Filter return action component is one of:
@ SECCOMP RET ALLOW: system call is allowed to execute

e SECCOMP_RET_KILL_PROCESS (since Linux 4.14, 2017):
process (all threads) is immediately killed
e Terminated as though process had been killed with SIGSYS
@ There is no actual SIGSYS signal delivered, but...

o To parent (via wait()) it appears child was killed by SIGSYS

e Core dump is also produced

@ SECCOMP_RET_KILL_THREAD (== SECCOMP_RET_KILL):
thread (i.e., task, not process) is immediately killed

o Terminated as though thread had been killed with SIGSYS

o If this is the only thread in process, a core dump is also
produced

e SECCOMP_RET _KILL THREAD alias was added in Linux 4.14

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-33 §20.5

Filter return action (2)

@ SECCOMP_RET ERRNO: return an error from system call
e System call is not executed
o Value in SECCOMP_RET DATA is returned in errno

@ SECCOMP_RET_TRACE: attempt to notify ptrace() tracer
before making syscall

e Gives tracing process a chance to assume control
o If there is no tracer, syscall fails with ENOSYS error

o strace(1) uses this to speed tracing (since 2018)
o See seccomp(2)

@ SECCOMP_RET_TRAP: calling thread is sent SIGSYS signal
o Can catch this signal; see seccomp(2) for more details

o Example: seccomp/seccomp_trap_sigsys.c

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-34 §20.5

Filter return action (3)

@ SECCOMP_RET_LOG (since Linux 4.14): allow + log syscall
e System call is allowed, and also logged to audit log
o /var/log/audit/audit.log; ausearch(8)

o Useful during filter development (later...)

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-35 §20.5

Filter return action (4)

@ SECCOMP_RET_USER_NOTIF (since Linux 5.0, 2019): send
notification to user-space “supervisor’ process

o See seccomp(2), seccomp__unotify(2), and
seccomp/seccomp_unotify_mkdir.c,
seccomp/seccomp_unotify_openat.c

e Added for some container use cases, but other uses are possible

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-36 §20.5

Filter return action (5)

@ SECCOMP_RET_USER_NOTIF (continued):
o System call is not (yet) executed
o Notified process (the “supervisor”):

@ Receives syscall info (same as BPF filter) + PID of filtered
process (the “target”)

o Can use received info to (for example) inspect arguments of
target’s syscall (e.g., via /proc/PID/mem)

o Can perform operation on behalf of “target” (i.e., target's
syscall is not executed)

@ Sends response containing (fake) success/error return value
for target's syscall

@ Can instead send “continue” response telling kernel to let
syscall proceed
o /\ /\ can not safely be used to implement security policy

e E.g., attacker could manipulate target's memory after
supervisor says “continue”

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-37 §20.5

Outline
20 Seccomp 20-1

20.6 BPF programs 20-38

Installing a BPF program

@ A process installs a filter for itself using one of:
e seccomp (SECCOMP_SET_MODE_FILTER, flags, &fprog)
@ Only since Linux 3.17

o prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
&fprog)

@ &fprog is a pointer to a BPF program:

struct sock_fprog {
unsigned short len; /* Number of instructions */
struct sock_filter *filter; /* Pointer to program
(array of instructions) */

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-40 §20.6

Installing a BPF program

To install a filter, one of the following must be true:

o Caller is privileged (has CAP_SYS_ADMIN in its user
namespace)

@ Caller has to set the no_new privs process attribute:

prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

o Causes set-UID/set-GID bit / file capabilities to be ignored
on subsequent execve() calls

@ Once set, no_new_privs can't be unset

@ Per-thread attribute

e Prevents possibility of attacker starting privileged program
and manipulating it to misbehave using a seccomp filter

o | no_new_privs && ! CAP_SYS_ADMIN =
seccomp()/prctl(PR_SET_SECCOMP) fails with EACCES

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-41 §20.6

Example: seccomp/seccomp_deny open.c

int main(int argc, char *argv[]) {
prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

install _filter();
open("/tmp/a", O_RDONLY);

printf ("We shouldn't see this message\n");
exit (EXIT_SUCCESS) ;

QUOWOONOUTPWN -

[N

}

Program installs a filter that prevents open() and openat() being
called, and then calls open()

@ Set no new privs bit
@ Install seccomp filter

o Call open()

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-42 §20.6

Example: seccomp/seccomp deny open.c

1| static void install_filter(void) {

2 struct sock_filter filter[] = {

3

4 /* Architecture-check code not shown */

5

6 BPF_STMT(BPF_LD | BPF_W | BPF_ABS,

7 (offsetof (struct seccomp_data, nr))),

8
o BPF filter program consists of a series of sock_ filter structs
@ For now we ignore some BPF code that checks the

architecture that BPF program is executing on
o /\ This is an essential part of every BPF filter program
@ Load system call number into accumulator
o (BPF program continues on next slide)
System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-43 §20.6

Example: seccomp/seccomp_deny open.c

1| #ifdef __NR_open /* Not all architectures have open() */
2 BPF_JUMP (BPF_JMP | BPF_JEQ | BPF_K, NR_open, 2, 0),

3| #endif

4 BPF_JUMP (BPF_JMP | BPF_JEQ | BPF_K, NR_openat, 1, 0),
5 BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_ ALLOW),

6 BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET KILL_PROCESS)

7 18

@ Test if system call number matches = NR open
e True: advance 2 instructions = kill process

e False: advance O instructions = next test

o (open() is absent on some architectures, because it can be
implemented using openat())

@ Test if system call number matches __NR_openat
e True: advance 1 instruction = kill process

e False: advance O instructions = allow syscall

o (Note: creat() + open_by_handle_at() are still not filtered)

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-44 §20.6

Example: seccomp/seccomp deny open.c

struct sock_fprog prog = {
.len = sizeof(filter) / sizeof(filter[0]),
.filter = filter,

s

seccomp (SECCOMP_SET_MODE_FILTER, O, &prog);

~NOoO O WN -

e Construct argument for seccomp()

o Install filter

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp

20-45 §20.6

Example: seccomp/seccomp_deny open.c

Upon running the program, we see:

$./seccomp_deny_open
Bad system call # Message printed by shell

189

$ echo $7 # Display exit status of last command

@ "“Bad system call” was printed by shell, because it looks like

its child was killed by SIGSYS

o Exit status of 159 (== 128 + 31) also indicates termination

as though killed by SIGSYS

o Exit status of process killed by signal is 128 + signum

e SIGSYS is signal number 31 on this architecture

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp

20-46 §20.6

Example: seccomp/seccomp control open.c

@ A more sophisticated example

o Filter based on flags argument of open() / openat()
e O_CREAT specified = kill process

e O_WRONLY or O_RDWR specified = cause call to fail with
ENOTSUP error

o flagsis arg. 2 of open(), and arg. 3 of openat():

int open(const char *pathname, int flags, ...);
int openat(int dirfd, const char *pathname, int flags, ...);

o flags serves exactly the same purpose for both calls

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-47 §20.6

Example: seccomp/seccomp_control open.c

struct sock_filter filter[] = {
/* Architecture-check code not shown */

BPF_STMT(BPF LD | BPF_W | BPF_ABS,
(offsetof (struct seccomp_data, nr))),

#ifdef __NR_open /* Not all architectures have open() */
/* Is this an open() syscall? */
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_open, 0, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
(offsetof (struct seccomp_data, args([1]))),
BPF_JUMP(BPF_JMP | BPF_JA, 3, 0, 0),
#endif

@ Load system call number

e For open(), load flags argument (args[1]) into accumulator,
and then skip to flags processing

o (Some architectures don't have open())

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-48 §20.6

Example: seccomp/seccomp control open.c

/* Is this an openat() syscall? x*/
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, NR_openat, 1, 0),

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ ALLQOW),

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
(offsetof (struct seccomp_data, args[2]))),

@ For openat(), load flags argument (args/2]) into
accumulator and continue to flags processing

@ Allow all other system calls

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-49 §20.6

Example: seccomp/seccomp control open.c

BPF_JUMP(BPF_JMP | BPF JSET | BPF_K, 0 CREAT, 0, 1),
BPF_STMT(BPF_RET | BPF_K, SECCOMP RET KILL PROCESS),

BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, O WRONLY | O RDWR, O, 1),
BPF_STMT(BPF_RET | BPF_K, SECCOMP RET ERRNO | ENOTSUP),

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET ALLOW)

};

Process flags value:
@ Test if 0 CREAT bit is set in flags
e True: skip O instructions = kill process

o False: skip 1 instruction

@ Test if 0 WRONLY or O_RDWR is set in flags
e True: cause call to fail with ENOTSUP error in errno

o False: allow call to proceed

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-50 §20.6

Example: seccomp/seccomp control open.c

int main(int argc, char *argv[]) {
prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
install filter();

if (open("/tmp/a", O_RDONLY) == -1)
perror ("openl");
if (open("/tmp/a", O_WRONLY) == -1)
perror ("open2") ;
if (open("/tmp/a", O_RDWR) == -1)
perror ("open3") ;
if (open("/tmp/a", O_CREAT | O_RDWR, 0600) == -1)

perror ("opend") ;

exit (EXIT_SUCCESS) ;

@ Test open() calls with various flags

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-51 §20.6

Example: seccomp/seccomp_control open.c

$ touch /tmp/a

$./seccomp_control_open
open2: Operation not supported
open3: Operation not supported
Bad system call

$ echo $7

159

e First open() succeeded

@ Second and third open() calls failed
o Kernel produced ENOTSUP error for call

@ Fourth open() call caused process to be killed
o (159 == 128 + 31; SIGSYS is signal 31)

System Programming for Linux Containers ©2023, Michael Kerrisk Seccomp 20-52 §20.6

