
man7.org
Training and Consulting

Linux Security and Isolation APIs
Course code: M7D-SECISOL02

This course provides a deep understanding of the low-level Linux features–set-
UID/set-GID programs, capabilities, namespaces, cgroups (control groups), and
seccomp–used to implement privileged applications and build container, virtual-
ization, and sandboxing technologies. Detailed presentations coupled with care-
fully designed practical exercises provide participants with the knowledge needed
to understand, design, develop, and administer such applications. (The course
does not cover administering container systems such as Docker and LXC, but
provides participants with a good understanding of the underlying implementa-
tion and operation of such systems.)

Audience and prerequisites
The primary audience comprises designers and programmers
building privileged applications, container applications, and
sandboxing applications. Systems administrators who man-
age such applications will also find the course of benefit.

Participants should have working knowledge of the fun-
damental system programming topics covered in the Linux
System Programming Essentials (M7D-SPESS01) course.
This includes file descriptors and file I/O, signals, and the
process lifecycle (fork(), exec(), wait(), exit()).

Participants should have a good reading knowledge of the
C programming language and some programming experience
in a language such as C or Go. (Note, however, that most
of the course exercises do not require writing programs.)

Related courses
This course is also available as a number of smaller pieces:

• Linux Capabilities and Namespaces, M7D-CAPNS01

• Linux Control Groups (Cgroups), M7D-CGROUPS02

• Linux Secure Computing (Seccomp), M7D-SECCOMP01

Course materials
• Course books (written by the trainer) that include all slides

and exercises presented in the course
• An electronic copy of the trainer’s book, The Linux Pro-

gramming Interface
• Numerous example programs written by the course trainer

Course duration and format
Four days, with around 40% of the course time devoted to
practical sessions.

Course inquiries and bookings
For inquiries about courses and consulting, you can contact
us in the following ways:

• Email: training@man7.org
• Phone: +49 (89) 2488 6180 (German landline)

Prices, dates, and further details
For course prices, upcoming course dates, and further infor-
mation about the course, please visit the course web page,
http://man7.org/training/secisol/.

About the trainer

Michael Kerrisk has a unique set of qualifications
and experience that ensure that course partici-
pants receive training of a very high standard:

• He has been programming on UNIX systems
since 1987 and began teaching UNIX system
programming courses in 1989.

• He is the author of The Linux Programming
Interface, a 1550-page book acclaimed as the
definitive work on Linux system programming.

• He has been actively involved in Linux de-
velopment, working with kernel developers
on testing, review, and design of new Linux
kernel–user-space APIs.

• Since 2000, he has been the involved in the
Linux man-pages project, which provides the
manual pages documenting Linux system calls
and C library APIs, and was the project main-
tainer from 2004 to 2021.

http://man7.org/training/ k training@man7.org (v2025-07-10 #d9c885aa) Page 1

http://man7.org/training/secisol/
http://man7.org/training/


Linux Security and Isolation APIs: course contents in detail

Topics marked with an asterisk (*) may be covered, if time permits.

1. Course Introduction
2. Security and Isolation APIs

Overview (*)

• Sandboxing
• Containers

3. Classical Privileged Programs

• A simple set-user-ID program
• Saved set-user-ID and and saved

set-group-ID
• Changing process credentials
• A few guidelines for writing

privileged programs

4. Capabilities

• Process and file capabilities
• Permitted and effective

capabilities
• Setting and viewing file

capabilities
• Capabilities-dumb and

capabilities-aware applications
• Text-form capabilities

5. Capabilities and execve()

• Capabilities and execve()
• The capability bounding set
• Inheritable capabilities
• Summary of process capability

sets (so far)
• Ambient capabilities
• An alternative summary of

process capability sets
• Summary remarks

6. Capabilities and UID 0

• Capabilities and UID transitions
• Capabilities, UID 0, and execve()
• Making a capabilities-only

environment: securebits (*)

7. Programming with capabilities (*)

• Programming with capabilities

8. Namespaces

• An example: UTS namespaces
• Namespaces commands
• Namespaces demonstration (UTS

namespaces)
• Namespace types and APIs
• Namespaces, containers, and

virtualization

9. Mount Namespaces and Shared
Subtrees

• Mount namespaces
• Shared subtrees
• Bind mounts

10. PID Namespaces

• PID namespaces

11. Other Namespaces

• IPC namespaces
• Time namespaces
• Cgroup namespaces
• Network namespaces

12. Namespaces APIs

• API Overview
• Creating a child process in new

namespaces: clone()
• /proc/PID/ns
• Entering a namespace: setns()
• Creating a namespace: unshare()
• PID namespaces idiosyncrasies
• Namespace lifetime (*)

13. User Namespaces

• Overview of user namespaces
• Creating and joining a user

namespace
• User namespaces: UID and GID

mappings
• Accessing files (and other objects

with UIDs/GIDs)
• Security issues
• Combining user namespaces with

other namespaces
• Use cases

14. User namespaces, execve(), and
user ID 0

• User namespaces, execve(), and
user ID 0

15. User Namespaces and Capabilities

• User namespaces and capabilities
• What does it mean to be

superuser in a namespace?
• Discovering namespace

relationships
• File-related capabilities (*)

16. User Namespaces and Privileged
Programs (*)

• User namespace “set-UID-root”
programs

• Namespaced file capabilities

17. Mount Namespaces: Further
Details (*)

• Peer groups
• Private mounts
• Slave mounts
• Unbindable mounts
• Mounting a container filesystem

18. Seccomp

• Seccomp filtering and BPF
• The BPF virtual machine and

BPF instructions
• BPF filter return values
• Installing a BPF program
• BPF program examples
• Checking the architecture
• Productivity aids (libseccomp and

other tools)
• Applications and further

information

19. Seccomp: Further Details (*)

• Caveats
• Discovering the system calls made

by a program
• Further details on seccomp filters
• Extended BPF (eBPF)
• Other filter return actions
• Further details on BPF programs
• Recent seccomp features
• Audit logging of filter actions

20. Cgroups: Introduction

• Preamble
• What are control groups?
• An example: the pids controller
• Creating and destroying cgroups
• Populating a cgroup
• Enabling and disabling controllers

21. Cgroups: A Survey of the
Controllers

• The cpu, memory, freezer, and
pids controllers

• Other controllers

22. Cgroups: Advanced Features

• Cgroup namespaces
• Release notification

(cgroup.events file)
• Delegation

23. Cgroups: Thread Mode (*)

• Overview of thread mode
• Creating and using a threaded

subtree

24. Cgroups Version 1 (*)

• Cgroups v1: hierarchies and
controllers

• Cgroups v1: populating a cgroup
• Cgroups v1: release notification
• Cgroups v1: delegation
• Problems with cgroups v1;

rationale for v2

http://man7.org/training/ k training@man7.org (v2025-07-10 #d9c885aa) Page 2

http://man7.org/training/

	Audience and prerequisites
	Related courses
	Course materials
	Course duration and format
	Course inquiries and bookings
	Prices, dates, and further details
	toAbout the trainer

