
man7.org
Training and Consulting

System Programming for Linux Containers
Course code: M7D-SPLC02

This course provides a deep understanding of the Linux technologies (namely, set-
UID/set-GID programs, capabilities, namespaces, cgroups, and seccomp) used
to implement container, virtualization, and sandboxing systems. (These are the
technologies used to build systems such as Docker, LXC, Firejail, and Flatpak.)
The course also provides an understanding of the core APIs used to build system-
level applications that run on such systems. Detailed explanations and carefully
designed practical exercises provide participants with the knowledge needed both
to troubleshoot container and sandboxing systems and to write complex appli-
cations that run on those systems.

Audience and prerequisites
The audience for this course includes designers, developers,
and DevOps who are building, troubleshooting, and adminis-
tering container and sandboxing systems, as well as designers
and developers who are implementing applications to run on
such systems.

Participants should have a good reading knowledge of
the C programming language and some programming ex-
perience in a language suitable for completing the course
exercises (e.g., C, C++, Go, Rust). (Note, however, that,
except on the first day of the course, most of the course
exercises do not require writing programs.)

Previous system programming experience is not required.

Related courses
This course is equivalent to the combination of the following
two courses:

• Linux/UNIX System Programming Essentials, M7D-
SPESS01

• Linux Security and Isolation APIs, M7D-SECISOL02

Course duration and format
Five days, with up to 40% devoted to practical sessions.

Course materials
• Course books (written by the trainer) that include all slides

and exercises presented in the course
• An electronic copy of the trainer’s book, The Linux Pro-

gramming Interface
• Numerous example programs written by the course trainer

Course inquiries and bookings
For inquiries about courses and consulting, you can contact
us in the following ways:

• Email: training@man7.org
• Phone: +49 (89) 2155 2990 (German landline)

Prices, dates, and further details
For course prices, upcoming course dates, and further infor-
mation about the course, please visit the course web page,
http://man7.org/training/splc/.

About the trainer

Michael Kerrisk has a unique set of qualifications
and experience that ensure that course partici-
pants receive training of a very high standard:

• He has been programming on UNIX systems
since 1987 and began teaching UNIX system
programming courses in 1989.

• He is the author of The Linux Programming
Interface, a 1550-page book acclaimed as the
definitive work on Linux system programming.

• He has been actively involved in Linux de-
velopment, working with kernel developers
on testing, review, and design of new Linux
kernel–user-space APIs.

• Since 2000, he has been the involved in the
Linux man-pages project, which provides the
manual pages documenting Linux system calls
and C library APIs, and was the project main-
tainer from 2004 to 2021.

http://man7.org/training/ k training@man7.org (v2024-01-27 #0fadcc6c) Page 1

http://man7.org/training/splc/
http://man7.org/training/


System Programming for Linux Containers: course contents in detail

Topics marked with an asterisk (*) are optional, and will be covered as time permits

1. Course Introduction
2. Fundamental Concepts

• Error handling
• System data types
• Notes on code examples

3. File I/O

• File I/O overview
• open(), read(), write(), and close()

4. Processes

• Process IDs
• Process memory layout
• Command-line arguments
• The environment list
• The /proc filesystem

5. Signals

• Overview of signals
• Signal dispositions
• Useful signal-related functions
• Signal handlers
• Designing signal handlers

6. Process Lifecycle

• Creating a new process: fork()
• Process termination
• Monitoring child processes
• Orphans and zombies
• The SIGCHLD signal
• Executing programs: execve()

7. System Call Tracing with strace (*)

• Getting started
• Tracing child processes
• Filtering strace output

8. Security and Isolation APIs
Overview (*)

• Sandboxing
• Containers

9. Classical Privileged Programs

• A simple set-user-ID program
• Saved set-user-ID and and saved

set-group-ID
• Changing process credentials
• A few guidelines for writing

privileged programs

10. Capabilities

• Process and file capabilities
• Permitted and effective capabilities
• Setting and viewing file capabilities
• Capabilities-dumb and

capabilities-aware applications
• Text form capabilities
• Capabilities and execve()
• The capability bounding set
• Inheritable capabilities
• Ambient capabilities
• Capabilities and UID transitions

11. Capabilities: Further Topics

• Capabilities, UID 0, and execve()
• Making a capabilities-only

environment: securebits (*)
• Programming with capabilities (*)

12. Namespaces

• An example: UTS namespaces
• Namespaces commands
• Namespaces demonstration (UTS

namespaces)
• Namespace types and APIs
• Namespaces, containers, and

virtualization

13. Mount Namespaces and Shared
Subtrees

• Mount namespaces
• Shared subtrees
• Bind mounts

14. PID Namespaces

• PID namespaces

15. Other Namespaces

• IPC namespaces
• Time namespaces
• Cgroup namespaces
• Network namespaces

16. Namespaces APIs

• API Overview
• Creating a child process in new

namespaces: clone()
• /proc/PID/ns
• Entering a namespace: setns()
• Creating a namespace: unshare()
• PID namespaces idiosyncrasies
• Namespace lifetime (*)

17. User Namespaces

• Overview of user namespaces
• Creating and joining a user

namespace
• User namespaces: UID and GID

mappings
• User namespaces, execve(), and user

ID 0
• Accessing files; file-related

capabilities (*)
• Security issues
• Use cases
• Combining user namespaces with

other namespaces

18. User Namespaces and Capabilities

• User namespaces and capabilities
• What does it mean to be superuser

in a namespace?
• Discovering namespace relationships
• User namespace “set-UID-root”

programs (*)
• Namespaced file capabilities (*)

19. Mount Namespaces: Further Details
(*)

• Peer groups
• Private mounts
• Slave mounts
• Unbindable mounts
• Mounting a container filesystem

20. Seccomp

• Introduction and history
• Seccomp filtering and BPF
• The BPF virtual machine and BPF

instructions
• BPF filter return values
• BPF programs
• Checking the architecture
• Productivity aids (libseccomp and

other tools)
• Applications and further information

21. Seccomp: Further Details (*)

• Caveats
• Discovering the system calls made by

a program
• Further details on seccomp filters
• Extended BPF (eBPF)
• Further details on BPF programs
• Recent seccomp features
• Audit logging of filter actions

22. Cgroups: Introduction

• Preamble
• What are control groups?
• An example: the pids controller
• Creating and destroying cgroups
• Populating a cgroup
• Enabling and disabling controllers

23. Cgroups: A Survey of the Controllers

• The cpu, memory, freezer, and pids
controllers

• Other controllers

24. Cgroups: Advanced Features

• Cgroup namespaces
• Release notification (cgroup.events

file)
• Delegation

25. Cgroups: Thread Mode (*)

• Overview of thread mode
• Creating and using a threaded

subtree

26. Cgroups Version 1 (*)

• Cgroups v1: hierarchies and
controllers

• Cgroups v1: populating a cgroup
• Cgroups v1: release notification
• Cgroups v1: delegation
• Problems with cgroups v1; rationale

for v2

http://man7.org/training/ k training@man7.org (v2024-01-27 #0fadcc6c) Page 2

http://man7.org/training/

	Audience and prerequisites
	Related courses
	Course duration and format
	Course materials
	Course inquiries and bookings
	Prices, dates, and further details
	toAbout the trainer

